Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Probe, spectrometer selection

Here we will focus in detail on a UV pump-IR probe spectrometer described by Emsting and co-workers the system is based on an excimer laser and a dye laser operating with a pulse repetition rate ranging from 5 to 10 Hz. Pump pulses at 308 nm excite the sample and are followed at a selected time by probe IR pulses that range from 1950 to 4300 cm Absorbance changes can be recorded with a time resolution of 1.8 ps and with an accuracy in absorbance (A) of 0.001. [Pg.883]

It is possible to carry out a chromatographic separation, collect all, or selected, fractions and then, after removal of the majority of the volatile solvent, transfer the analyte to the mass spectrometer by using the conventional inlet (probe) for solid analytes. The direct coupling of the two techniques is advantageous in many respects, including the speed of analysis, the convenience, particularly for the analysis of multi-component mixtures, the reduced possibility of sample loss, the ability to carry out accurate quantitation using isotopically labelled internal standards, and the ability to carry out certain tasks, such as the evaluation of peak purity, which would not otherwise be possible. [Pg.22]

To implement the Doppler-selected TOF measurement, the initial relative velocity is arranged to be parallel to the propagation vector of the probe laser. This critical configuration can readily be achieved in this rotating sources machine.36 Under this configuration, each Doppler-sliced 2D distribution exhibits a cylindrical symmetry The slit in front of the TOF spectrometer allows only those products with a rather small vx to be detected. Hence, only the -distribution, obtained by the TOF measurement, is needed to completely characterize the Doppler-sliced 2D (vx — vy) distribution. [Pg.6]

Selected ion monitoring can be used for the determination of the relative amount of each component of a mixture, introduced into the mass spectrometer by the direct inlet probe However, such a determination requires reference mixtures of known composition for calibration. In the present experiment, since the monochloro pentaziridino derivative had not yet been isolated in the pure form, it was necessary to determine its concentration, by an auxiliary method, in a sample which could then be utilized as a reference mixture for further experiments. In order to do this we titrated chlorine in the toxic sample of MYKO 63 (B) by the classical method. The results indicated that the amount of N3P3AZJCI was between 0.5-1.5 %. The large statistical error is due to the low chlorine content in the sample examined. Thus, we used the remarkable possibilities provided by neutron activation analysis when the impurity to be quantified is a chlorinated moiety. It is well-known indeed that the C1 -f 2n peak is amongst the most easily detectable by neutron... [Pg.17]

Fig. 4. (a) 300 MHz proton spectrum and (b)-(e) selective reverse INEPT spectra of 28% menthone (Aldrich) in acetone-ds, measured using a 5 mm sample in the 10 mm broadband probe of a Varian Associates XL300 spectrometer using the sequence of fig. 1. The sample contains substantial quantities of isomenthone, seen clearly in the methyl region of trace (a). Spectra (b) to (e) used selective excitation of carbon sites 6, 7, 2 and 8, respectively, with delays 2r of 3.85, 3.85, 1.92 and 1.54 ms. 32 transients were used for each trace no spin lock pulses or 180° pulses were used. Traces (b) to (e) have a vertical scale lOOOx that of trace (a). No homodecoupling was used during acquisition. [Pg.100]

For pump-probe photoionization (PPI, Fig.l) the first laser pulse is tuned into resonance with the (vibrationless) electronic transition of the molecule, the second pulse is red-shifted in wavelength, so that the enhanced (1+1 ) photoion signal can be easily identified. When a time-of-flight mass spectrometer is used for detection the mass-selective photoion signal as a function of time delay can be recorded as the RCS spectrum of the electronically excited state, which is particularly useful for the specific investigation of molecular clusters. [Pg.73]

Figure 1. Experimental set-up for performing transient two-photon ionization spectroscopy on metal clusters. The particles were produced in a seeded beam expansion, their flux detected with a Langmuir-Taylor detector (LTD). The pump and probe laser pulses excited and ionized the beam particles. The photoions were size selectively recorded in a quadrupole mass spectrometer (QMS) and detected with a secondary electron multiplier (SEM). The signals were then recorded as a function of delay between pump and probe pulse. Figure 1. Experimental set-up for performing transient two-photon ionization spectroscopy on metal clusters. The particles were produced in a seeded beam expansion, their flux detected with a Langmuir-Taylor detector (LTD). The pump and probe laser pulses excited and ionized the beam particles. The photoions were size selectively recorded in a quadrupole mass spectrometer (QMS) and detected with a secondary electron multiplier (SEM). The signals were then recorded as a function of delay between pump and probe pulse.
In this mode, the eluent is directly flowing from the chromatographic system into the NMR probe. As only selected peaks are measured in the NMR spectrometer the separation is monitored in parallel with an LC detector (typically a UV detector). A peak is selected from the chromatogram recorded... [Pg.26]

Figure 6.1 UV chromatograms of the test mixture of four / -hydroxybenzoic acid esters (1, methyl 2, ethyl 3, propyl 4, butyl) after the column and after the NMR flow cell at flow rates of (a) 1.0 and (b) 0.1 ml/min conditions column, LiChrospher RP select B, 125 x 4 mm id, 5 Jim, spectrometer, Bruker DRX 600 probe head, 4 mm z-gradient LC probe, active volume 120 a1 eluents, acetonitrile (A) and D2O (B) gradient, t = Omin A/B (40/60), t = 8 min A/B (70/30) at a flow rate of 1.0 ml/min and t = 80 min A/B (70/30) at a flow rate of 0.1 ml/min... Figure 6.1 UV chromatograms of the test mixture of four / -hydroxybenzoic acid esters (1, methyl 2, ethyl 3, propyl 4, butyl) after the column and after the NMR flow cell at flow rates of (a) 1.0 and (b) 0.1 ml/min conditions column, LiChrospher RP select B, 125 x 4 mm id, 5 Jim, spectrometer, Bruker DRX 600 probe head, 4 mm z-gradient LC probe, active volume 120 a1 eluents, acetonitrile (A) and D2O (B) gradient, t = Omin A/B (40/60), t = 8 min A/B (70/30) at a flow rate of 1.0 ml/min and t = 80 min A/B (70/30) at a flow rate of 0.1 ml/min...

See other pages where Probe, spectrometer selection is mentioned: [Pg.100]    [Pg.890]    [Pg.477]    [Pg.174]    [Pg.517]    [Pg.520]    [Pg.409]    [Pg.459]    [Pg.523]    [Pg.738]    [Pg.7]    [Pg.141]    [Pg.5]    [Pg.277]    [Pg.17]    [Pg.101]    [Pg.108]    [Pg.62]    [Pg.348]    [Pg.17]    [Pg.370]    [Pg.152]    [Pg.191]    [Pg.43]    [Pg.218]    [Pg.134]    [Pg.192]    [Pg.618]    [Pg.95]    [Pg.102]    [Pg.212]    [Pg.228]    [Pg.3]    [Pg.42]    [Pg.639]    [Pg.438]    [Pg.512]    [Pg.137]    [Pg.866]    [Pg.6]   
See also in sourсe #XX -- [ Pg.13 , Pg.77 ]




SEARCH



Spectrometer selection

© 2024 chempedia.info