Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Probability electronic thermodynamic

There is a special kind of site-selectivity which has been called periselectivity. When a conjugated system enters into a reaction, a cycloaddition for example, the whole of the conjugated array of electrons may be mobilized, or a large part of them, or only a small part of them. The Woodward-Hoffmann rules limit the total number of electrons (to 6, 10, 14 etc. in all-suprafacial reactions, for example), but they do not tell us which of 6 or 10 electrons would be preferred if both were feasible. Thus in the reaction of cyclopentadiene (355) and tropone (356), mentioned at the beginning of this book, there is a possibility of a Diels-Alder reaction, leading to 354, but, in fact, an equally allowed, ten-electron reaction is actually observed,121 namely the one leading to the adduct (357). The product is probably not thermodynamically much preferred to the... [Pg.173]

Radicals can be prepared from closed-shell systems by adding or removing one electron or by a dissociative fission. Generally speaking, the electron addition or abstraction can be performed with any system, the ionization potential and electron affinity being thermodynamic measures of the probability with which these processes should proceed. Thus, to accomplish this electron transfer, a sufficiently powerful electron donor or acceptor (low ionization potential and high electron affinity, respectively) is required. If the process does not proceed in the gas phase, a suitable solvent may succeed. [Pg.329]

For a cis alkene to be formed the reaction would have to proceed through a czs-a,p-disubstituted metallacyclobutane intermediate (cis isomer of 10). Although it was unclear why there was a preference for forming a cis metallacycle, which leads to the thermodynamically less stable product, it was probably related to the small size or the electron-withdrawing properties of the nitrile group. [Pg.171]

This case is shown in Fig. 10.6c and d where through absorption of light a photohole in the vb and a photoelectron in the cb are formed. The probability that interfacial electron transfer takes place, i.e. that a thermodynamically suitable electron donor is oxidized by the photohole of the vb depends (i) on the rate constant of the interfacial electron transfer, kET, (ii) on the concentration of the adsorbed electron donor, [Rads]. and (iii) on the rate constants of recombination of the electron-hole pair via radiative and radiationless transitions,Ykj. At steady-state of the electronically excited state, the quantum yield, Ox, ofinterfacial electron-transfer can be expressed in terms of rate constants ... [Pg.348]

For instance, the more efficiently the photoholes are trapped from the valence band of an n-type semiconductor, the higher is the probability that the photoelectrons in the conduction band reach the surface and can reduce a thermodynamically suitable electron acceptor at the solid-liquid interface. This is illustrated with an example taken from a paper by Frei et al, 1990. In this example methylviologen, MV2+, acts as the electron acceptor and TiC>2 as the photocatalyst. Upon absorption of light with energy equal or higher than the band-gap energy of Ti02, a photoelectron is formed in the conduction band and a photohole in the valence band ... [Pg.349]

Oxidation of unfunctionalized alkanes is notoriously difficult to perform selectively, because breaking of a C-H bond is required. Although oxidation is thermodynamically favourable, there are limited kinetic pathways for reaction to occur. For most alkanes, the hydrogens are not labile, and, as the carbon atom cannot expand its valence electron shell beyond eight electrons, there is no mechanism for electrophilic or nucleophilic substitution short of using extreme (superacid or superbase) conditions. Alkane oxidations are therefore normally radical processes, and thus difficult to control in terms of selectivity. Nonetheless, some oxidations of alkanes have been performed under supercritical conditions, although it is probable that these actually proceed via radical mechanisms. [Pg.183]

Fig. 6. All paths leading from the initial to the final points in time t contribute an interfering amplitude to the path sum describing the resultant probability amplitude for the quantum propagation. In this double slit free particle case, two paths of constant speed are local functional stationary points of the action, and these two dominant paths provide the basis for a (semiclassical) classification of subsets of paths which contribute to the path integral. In the statistical thermodynamic path expression, the path sum is equal to the off-diagonal electronic thermal density matrix... Fig. 6. All paths leading from the initial to the final points in time t contribute an interfering amplitude to the path sum describing the resultant probability amplitude for the quantum propagation. In this double slit free particle case, two paths of constant speed are local functional stationary points of the action, and these two dominant paths provide the basis for a (semiclassical) classification of subsets of paths which contribute to the path integral. In the statistical thermodynamic path expression, the path sum is equal to the off-diagonal electronic thermal density matrix...
Generally, it is the interaction of a donor (D) and an acceptor (A) involving the transfer of one electron. The probability of one-electron transfer is determined by thermodynamics namely, by the positive difference between the acceptor electron affinity and donor IP. The electron transfer is accompanied by a change in the solvate surroundings—charged particles are formed, and the solvent molecules (the solvent is usually polar) create a sphere around the particles thereby promoting their formation. Elevated temperatures destroy the solvate shell and hinder the conversion. Besides, electron transfer is often preceded by the formation of charge-transfer complexes by the sequence D A D A (D +, A -) (D+, A ) D+ A . ... [Pg.218]

The low threshold energies for the production of D( S), 0( P), and 0( D2) show the importance of valence excited states in the BSD of neutral fragments [47]. The pathway for D( S) desorption probably involves D O D -I- OD. Ffowever, the thresholds for producing 0( P2) and 0( D2), which are the same within experimental error, are lower than the 9.5-and 11.5-eV thermodynamic energies required to produce 0( P2) + 2D( S) and 0( D2) + 2D( S), respectively. The low threshold values therefore indicate that the formation of 0( P2) and 0( D2) must occur by a pathway which involves simultaneous formation of D2. Kimmel et al. have in fact reported [46] a threshold for the production of D2 from D2O ice at — 6 to 7 eV, which supports this conclusion. Above the ionization threshold of amorphous ice, these excited states can be formed directly or via electron-ion recombination. [Pg.240]

The interaction processes between UV-Vis photons and the outer electrons of the atoms of the analytes can be understood using quantum mechanics theory. In the thermodynamic equilibrium between matter and interacting electromagnetic radiation, according to the radiation laws postulated by Einstein, three basic processes between two stable energy levels 1 and 2 are possible. These processes, which can be defined by their corresponding transition probabilities, are summarised in Figure 1.3. [Pg.4]

A well understood case is that of quinoline reaction at position 2 is kinetically favored as compared with reaction at position 4, but the adduct from the latter is thermodynamically more stable. This situation, where the site of attack leading to the more stable adduct is the y position, is analogous with those regarding the formation of Meisenheimer adducts from benzene and pyridine derivatives and RCT nucleophiles. Presumably, with quinoline kinetic control favors the position that is more strongly influenced by the inductive effect of the heteroatom. The fact that position 2 of quinoline is the most reactive toward nucleophilic reagents is probably related to the lower 71-electron density at that position.123 However, the predominance of the C-4 adduct at equilibrium can be better justified by the atom localization energies for nucleophilic attachment at the different positions of quinoline. Moreover, both 7t-electron densities and atom localization energies indicate position 1 of isoquinoline to be the most favored one for nucleophilic addition. [Pg.365]


See other pages where Probability electronic thermodynamic is mentioned: [Pg.263]    [Pg.355]    [Pg.1447]    [Pg.612]    [Pg.4066]    [Pg.18]    [Pg.93]    [Pg.149]    [Pg.211]    [Pg.253]    [Pg.81]    [Pg.77]    [Pg.62]    [Pg.135]    [Pg.113]    [Pg.353]    [Pg.566]    [Pg.131]    [Pg.338]    [Pg.49]    [Pg.840]    [Pg.34]    [Pg.74]    [Pg.275]    [Pg.138]    [Pg.74]    [Pg.599]    [Pg.952]    [Pg.141]    [Pg.952]    [Pg.782]    [Pg.57]    [Pg.202]    [Pg.418]    [Pg.215]    [Pg.17]    [Pg.848]    [Pg.50]    [Pg.486]   
See also in sourсe #XX -- [ Pg.498 ]




SEARCH



Electronics thermodynamics

Probability electron

Probability electronic

Thermodynamic probability

© 2024 chempedia.info