Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Premixed flame effects

Taylor instabilities involve effects of buoyancy or acceleration in fluids with variable density a light fluid beneath a heavy fluid is unstable by the Taylor mechanism. The upward propagation of premixed flames in tubes is subject to Taylor instability (11). [Pg.518]

Strehlow R.A., Noe K.A., and Wherley B.L., The effect of gravity on premixed flame propagation and extinction in a vertical standard flammability tube, Proc. Combust. Inst., 21 1899-1908,1986. [Pg.25]

Egolfopoulos, F.N., Zhang, H., and Zhang, Z., Wall effects on the propagation and extinction of steady, strained, laminar premixed flames. Combust. Flame, 109,237,1997. [Pg.44]

V. Nayagam and F. A. Williams, Curvature effects on edge-flame propagation in the premixed-flame regime, Combust. Sci. Tech. 176 2125-2142,2004. [Pg.64]

P. Clavin and F.A. Williams. Effects of molecular diffusion and of thermal expansion on the structure and dynamics of premixed flames in turbulent flows of large scale and low intensity. Journal of Fluid Mechanics, 116 251-282,1982. [Pg.78]

It is presumed that the global-quenching criteria of premixed flames can be characterized by turbulent shaining (effect of Ka), equivalence ratio (effect of 4>), and heat-loss effects. Based on these aforemenhoned data, it is obvious that the lean methane flames (Le < 1) are much more difficult to be quenched globally by turbulence than the rich methane flames (Le > 1). This may be explained by the premixed flame shucture proposed by Peters [13], for which the premixed flame consisted of a chemically inert preheat zone, a chemically reacting inner layer, and an oxidation layer. Rich methane flames have only the inert preheat layer and the inner layer without the oxidation layers, while the lean methane flames have all the three layers. Since the behavior of the inner layer is responsible for the fuel consumption that... [Pg.114]

Yang, S.l. and Shy, S.S., Global quenching of premixed CH4/air flames Effects of turbulent straining, equivalence ratio, and radiative heat loss, Proc. Combust. Inst., 29,1841,2002. [Pg.117]

Sato, ]., Effects of Lewis number on extinction behavior of premixed flames in a stagnation flow, Proc. Combust. Inst., 19, 1541,1982. [Pg.117]

One significant result from the studies of stretched premixed flames is that the flame temperature and the consequent burning intensity are critically affected by the combined effects of nonequidiffusion and aerodynamic stretch of the mixture (e.g.. Refs. [1-7]). These influences can be collectively quantified by a lumped parameter S (Le i-l)x, where Le is the mixture Lewis number and K the stretch rate experienced by the flame. Specifically, the flame temperature is increased if S > 0, and decreased otherwise. Since Le can be greater or smaller than unity, while K can be positive or negative, the flame response can reverse its trend when either Le or v crosses its respective critical value. For instance, in the case of the positively stretched, counterflow flame, with k>0, the burning intensity is increased over the corresponding unstretched, planar, one-dimensional flame for Le < 1 mixtures, but is decreased for Le > 1 mixtures. [Pg.118]

This section emphasizes on flame quenching by stretch, as well as highlights and separately discusses the four aspects of counterflow premixed flame extinction limits, including (1) effect of nonequidiffusion, (2) influence of different boundary conditions, (3) effect of pulsating instability, and (4) relahonship of the fundamental limit of flammability. [Pg.119]

Platt, J.A. and T ien, J.S., Flammability of a weakly stretched premixed flame The effect of radiation loss. Fall Technical Meeting of the Eastern States Section of the Combustion Institute, Orlando, Florida, 1990. [Pg.127]

Nevertheless, despite all these remarkable achievements, some open questions still remain. Among them is the influence of the molecular transport properties, in particular Lewis number effects, on the structure of turbulent premixed flames. Additional work is also needed to quantify the flame-generated turbulence phenomena and its relationship with the Darrieus-Landau instability. Another question is what are exactly the conditions for turbulent scalar transport to occur in a coimter-gradient mode Finally, is it realistic to expect that a turbulent premixed flame reaches an asymptotic steady-state of propagation, and if so, is it possible, in the future, to devise an experiment demonstrating it ... [Pg.151]

In Chapter 6.3, C-J. Sung examines extinction of counterflow premixed flames. He emphasizes flame quenching by stretch and highlights four aspects of counterflow premixed flame extinction limits effect of nonequidiffusion, parf played by differences in boundary conditions, effect of pulsating insfabilify, and relation to the fundamental limit of flammability. [Pg.230]

The complexity of the turbulent reacting flow problem is such that it is best to deal first with the effect of a turbulent field on an exothermic reaction in a plug flow reactor. Then the different turbulent reacting flow regimes will be described more precisely in terms of appropriate characteristic lengths, which will be developed from a general discussion of turbulence. Finally, the turbulent premixed flame will be examined in detail. [Pg.215]

Sulfur trioxide is known to suppress soot in diffusion flames and increase soot in premixed flames. These opposite effects can be explained in the context of the section on sulfur oxidation (Section 2e). In diffusion flames, the slight suppression can be attributed to the reaction of H atoms via the step... [Pg.484]

If this step occurs late in the pyrolysis process, the hydroxyl radicals that form could attack the soot precursors. Thermal diffusivity may also have an effect. In premixed flames the S03 must dissociate into S02, which removes H atoms by... [Pg.484]

As additives to reduce soot output in flames, metal and organometallic compounds, such as ferrocene, have attracted the attention of many investigators (see Ref. [113]). The effect in premixed flames is best described by Bonczyk [114], who reported that the efficiency with which a given metal affects soot production characteristics depends almost exclusively on temperature and the... [Pg.484]

Available experimental studies of premixed flame stabilization focus on the effect of the bluff-body (stabilizer) configuration, combustion chamber geometry... [Pg.184]

It is well known that in a jet flame blow-out occurs if the air-fuel mixture flow rate is increased beyond a certain limit. Figure 18.3 shows the relationship between the blow-out velocity and the equivalence ratio for a premixed flame. The variation of blow-out velocity is observed for three different cases. First, the suction collar surrounding the burner is removed and the burner baseline performance obtained. Next, the effect of a suction collar itself without suction flow is documented. These experiments show that for the nozzle geometry studied, the free jet flame (without the presence of the collar) blows out at relatively low exit velocities, e.g., 2.15 m/s at T = 1.46, whereas for > 2 flame lift-off occurs. When the collar is present without the counterflow, the flame is anchored to the collar rim and blows out with the velocity of 8.5 m/s at T = 4. Figure 18.4a shows the photograph of the premixed flame anchored to the collar rim. The collar appears to have an effect similar to a bluff-body flame stabilizer. The third... [Pg.289]

Turns et al. [6] studied turbulent partially premixed flames burning methane, propane, and ethylene with air. The NO emission indices for methane and propane flames first increased and then decreased with increased levels of partial premixing. The NO emission indices for ethylene flames continuously increased at least in the limited range of partial premixing considered in the experiments. The results were qualitatively explained by the opposing effects of flame radiation and residence time on NO emissions. [Pg.441]

Kim, T.K., B. J. Alder, N. M. Laurendeau, and J.P. Gore. 1995. Exhaust and in situ measurements of nitric oxides for laminar partially premixed C2He-air flames Effect of premixing level at constant fuel flow rate. Combustion Science Technology 110-111 361-78. [Pg.451]

Figure 2.7 shows a typical pneumatic nebulization system for a premixed flame. The sample is sucked up a plastic capillary tube. In the type of concentric nebulizer illustrated here, the sample liquid is surrounded by the oxidant gas as it emerges from the capillary. The high velocity of this gas, as it issues from the tiny annular orifice, creates a pressure drop which sucks up, draws out and shatters the liquid into very tiny droplets. This phenomenon is known as the venturi effect and is illustrated in Fig. 2.8. [Pg.28]


See other pages where Premixed flame effects is mentioned: [Pg.518]    [Pg.35]    [Pg.36]    [Pg.56]    [Pg.58]    [Pg.58]    [Pg.59]    [Pg.92]    [Pg.110]    [Pg.110]    [Pg.112]    [Pg.138]    [Pg.148]    [Pg.155]    [Pg.7]    [Pg.193]    [Pg.278]    [Pg.291]    [Pg.185]    [Pg.215]    [Pg.460]    [Pg.462]    [Pg.466]    [Pg.483]    [Pg.290]    [Pg.316]    [Pg.446]   
See also in sourсe #XX -- [ Pg.236 ]




SEARCH



Flames effect

Premix

Premixed

Premixed flame

Premixers

© 2024 chempedia.info