Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Predictive human error analysis described

This section illustrates how the techniques described in Chapter 4 can be used to develop a procedure for the job of the top floor operator in the batch plant considered earlier. Two techniques are illustrated (i) a hierarchical task analysis (HTA) of the job, and (ii) a predictive human error analysis (PHEA) of the operations involved. HTA provides a description of how the job is actually done while PHEA identifies critical errors which can have an impact on the system in terms of safety or quality. The basic structure of the procedure is derived from the HTA which specifies in increasing detail the goals to be achieved. To emphasize critical task steps, various warnings and cautions can be issued based on the likely errors and recovery points generated by the PHEA. [Pg.317]

In addition to their descriptive fimctions, TA techniques provide a wide variety of information about the task that can be useful for error prediction and prevention. To this extent, there is a considerable overlap between Task Analysis and Human Error Analysis (HEA) techniques described later in this chapter. HEA methods generally take the result of TA as their starting point and examine what aspects of the task can contribute to human error, hr the context of human error reduction in the CPI, a combination of TA and HEA methods will be the most suitable form of analysis. [Pg.161]

The various analytical methods for predicting and reducing human error can be assigned to four groups or sections. In order to make a start on any form of analysis or prediction of human error, it is obviously necessary to gather information. The first section therefore describes a number of techniques that can be applied to acquire data about what the worker does, or what happened in an accident. [Pg.153]

In addition, the chapter will provide an overview of htunan reliability quantification techniques, and the relationship between these techniques and qualitative modeling. The chapter will also describe how human reliability is integrated into chemical process quantitative risk assessment (CPQRA). Both qualitative and quantitative techniques will be integrated within a framework called SPEAR (System for Predictive Error Analysis and Reduction). [Pg.202]

Qualitative human error prediction is the most important aspect of assessing and reducing the human contribution to risk. For this reason, it will be described in some detail in this section. The qualitative analysis performed in SPEAR involves the following techniques ... [Pg.211]

PROBLEM DEFINITION. This is achieved through plant visits and discussions with risk analysts. In the usual application of THERP, the scenarios of interest are defined by the hardware orientated risk analyst, who would specify critical tasks (such as performing emergency actions) in scenarios such as major fires or gas releases. Thus, the analysis is usually driven by the needs of the hardware assessment to consider specific human errors in predefined, potentially high-risk scenarios. This is in contrast to the qualitative error prediction methodology described in Section 5.5, where all interactions by the operator with critical systems are considered from the point of view of their risk potential. [Pg.227]

While the research described above suggested that the monkey was the species that yielded the most predictive correlations from which to predict human VD, Caldwell et al. have conducted a similar analysis and showed that VD data obtained in the rat yielded a predictive correlation [12]. In their approach, simply by multiplying the measured rat VDSS value by a factor of 188 yields a prediction for human (in units of volume that are not corrected for body weight) or by a factor of 0.67 when values are corrected for body weight. The approach yielded a mean-fold error of 1.85, which is a comparable level of error as other in vivo methods. [Pg.478]

A THERP tree is a technique used in human reliability assessment to calculate the probability of a human error during the execution of a task. (THERP stands for Technique for Human Error Rate Prediction.) A THERP tree is basically an event tree, where the root is the initiating event and the leaves are the possible outcomes. THERP is described in a publication from 1983 (Swain, A.D. and Guttmann, H.E., Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications, NUREG/CR-1278, USNRC), and is still widely used despite its unrealistic assumptions about human performance. One important... [Pg.88]

As implied in the diagram representing the GEMS model (Figure 2.5) and discussed in Section 2.6.3, certain characteristic error forms occur at each of the three levels of performance. This information can be used by the human-reliability analyst for making predictions about the forms of error expected in the various scenarios that may be considered as part of a predictive safety analysis. Once a task or portion of a task is assigned to an appropriate classification, then predictions can be made. A comprehensive set of techniques for error prediction is described in Chapter 5. [Pg.79]

Performance-influencing factors analysis is an important part of the human reliability aspects of risk assessment. It can be applied in two areas. The first of these is the qualitative prediction of possible errors that could have a major impact on plant or personnel safety. The second is the evaluation of the operational conditions under which tasks are performed. These conditions will have a major impact in determining the probability that a particular error will be committed, and hence need to be systematically assessed as part of the quantification process. This application of PIFs will be described in Chapters 4 and 5. [Pg.105]


See other pages where Predictive human error analysis described is mentioned: [Pg.20]    [Pg.65]    [Pg.1014]    [Pg.1065]    [Pg.66]    [Pg.147]    [Pg.1320]    [Pg.1248]   
See also in sourсe #XX -- [ Pg.190 ]




SEARCH



Error analysis

Human analysis

Human error

Human error analysis

Predictable errors

Predictive analysis

Predictive human error analysis

© 2024 chempedia.info