Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potential energy surface saddle point

In the phase-space treatment the situation is very similar. However, rather than study the morphology of the potential energy surface, we must focus on the total energy surface. The geometry of this surface, which is defined on phase space instead of coordinate space, can also be characterized by its stationary points and their stability. In this treatment, the rank-one saddles play a fundamental result. They are, in essence, the traffic barriers in phase space. For example, if two states approach such a point and one passes on one side and the other passes on the other side, then one will be reactive and the other nonreactive. Once the stationary points are identified, then the boundaries between the reactive and nonreactive states can be constructed and the dynamical structure of phase space has been determined. As in the case of potential energy surfaces, saddles with rank greater than one occur, especially in systems with high symmetry between outcomes, as in the dissociation of ozone. [Pg.183]

Ab initio calculations have also been used to study features of potential energy surfaces other than potential energy minima, saddle points, and reaction paths. For small reactive systems with three atoms it is possible to determine the eomplete potential energy surface from an ab initio calculation. A three-atom molecular systems such as H2O has three independent coordinates and, if the potential energy is calculated for ten values of each coordinate, one thousand total potential energy points results. These... [Pg.58]

Figure Al.6.26. Stereoscopic view of ground- and excited-state potential energy surfaces for a model collinear ABC system with the masses of HHD. The ground-state surface has a minimum, corresponding to the stable ABC molecule. This minimum is separated by saddle points from two distmct exit chaimels, one leading to AB + C the other to A + BC. The object is to use optical excitation and stimulated emission between the two surfaces to steer the wavepacket selectively out of one of the exit chaimels (reprinted from [54]). Figure Al.6.26. Stereoscopic view of ground- and excited-state potential energy surfaces for a model collinear ABC system with the masses of HHD. The ground-state surface has a minimum, corresponding to the stable ABC molecule. This minimum is separated by saddle points from two distmct exit chaimels, one leading to AB + C the other to A + BC. The object is to use optical excitation and stimulated emission between the two surfaces to steer the wavepacket selectively out of one of the exit chaimels (reprinted from [54]).
Ionova I V and Carter E A 1993 Ridge method for finding saddle points on potential energy surfaces J. Chem. Phys. 98 6377... [Pg.2358]

The reaction coordinate is one specific path along the complete potential energy surface associated with the nuclear positions. It is possible to do a series of calculations representing a grid of points on the potential energy surface. The saddle point can then be found by inspection or more accurately by using mathematical techniques to interpolate between the grid points. [Pg.155]

Variational transition state theory (VTST) is formulated around a variational theorem, which allows the optimization of a hypersurface (points on the potential energy surface) that is the elfective point of no return for reactions. This hypersurface is not necessarily through the saddle point. Assuming that molecules react without a reverse reaction once they have passed this surface... [Pg.166]

As mentioned earlier, a potential energy surface may contain saddle points , that is, stationary points where there are one or more directions in which the energy is at a maximum. Asaddle point with one negative eigenvalue corresponds to a transition structure for a chemical reaction of changing isomeric form. Transition structures also exist for reactions involving separated species, for example, in a bimolecular reaction... [Pg.17]

HyperChem can calculate transition structures with either semi-empirical quantum mechanics methods or the ab initio quantum mechanics method. A transition state search finds the maximum energy along a reaction coordinate on a potential energy surface. It locates the first-order saddle point that is, the structure with only one imaginary frequency, having one negative eigenvalue. [Pg.65]

Another use of frequency calculations is to determine the nature of a stationary point found by a geometry optimization. As we ve noted, geometry optimizations converge to a structure on the potential energy surface where the forces on the system are essentially zero. The final structure may correspond to a minimum on the potential energy surface, or it may represent a saddle point, which is a minimum with respect to some directions on the surface and a maximum in one or more others. First order saddle points—which are a maximum in exactly one direction and a minimum in all other orthogonal directions—correspond to transition state structures linking two minima. [Pg.70]

An IRC calculation examines the reaction path leading down from a transition structure on a potential energy surface. Such a calculation starts at the saddle point and follows the path in both directions from the transition state, optimizing the geometry of the molecular system at each point along the path. In this way, an IRC calculation definitively connects two minima on the potential energy surface by a path which passes through the transition state between them. [Pg.173]

Potential energy surfaces show many fascinating features, of which the most important for chemists is a saddle point. At any stationary point, both df/dx and df /Sy are zero. For functions of two variables f(x, y) such as that above, elementary calculus texts rarely go beyond the simple observation that if the quantity... [Pg.55]

Maxima, minima and saddle points are stationary points on a potential energy surface characterized by a zero gradient. A (first-order) saddle point is a maximum along just one direction and in general this direction is not known in advance. It must therefore be determined during the course of the optimization. Numerous algorithms have been proposed, and I will finish this chapter by describing a few of the more popular ones. [Pg.249]

At first sight, the easiest approach is to fit a set of points near the saddle point to some analytical expression. Derivatives of the fitted function can then be used to locate the saddle point. This method has been well used for small molecules (see Sana, 1981). An accurate fit to a large portion of the potential energy surface is also needed for the study of reaction dynamics by classical or semi-classical trajectory methods. [Pg.249]

A graphical representation of the potential energy surface or reaction coordinate. The transition state occurs at the saddle point. ( Adapted from Ref. 18.)... [Pg.170]

This reaction describes a quasi equilibrium in the sense that it counts only those transition states moving forward (i.e., toward products) along the reaction coordinate. One can picture18 reactants moving along a potential energy surface such as that in Fig. 7-5. The transition state resides in one sense at the maximum of this surface in another sense, at the minimum point. This is called a saddle point or a col (from the French word for mountain pass). [Pg.170]

Secondly, it is usual to calculate only a few points which are assumed to be characteristic with full optimization of geometry instead of the complete potential energy surface 48). For a pure thermodynamical view it is enough to know the minima of the educts and products, but kinetic assertions require the knowledge of the educts and the activated complex as a saddle point at the potential energy surface (see also part 3.1). [Pg.183]

There are numerous algorithms of different kinds and quality in routine use for the fast and reliable localization of minima and saddle points on potential energy surfaces (see 47) and refs, therein). Theoretical data about structure and properties of transition states are most interesting due to a lack of experimental facts about activated complexes, whereas there is an abundance of information about educts and products of a reaction. [Pg.183]

At R > 400 pm the orientation of the reactants looses its importance and the energy level of the educts is calculated (ethene + nonclassical ethyl cation). For smaller values of R and a the potential energy increases rapidly. At R = 278 pm and a = 68° one finds a saddle point of the potential energy surface lying on the central barrier, which can be connected with the activated complex of the reaction (21). This connection can be derived from a vibration analysis which has already been discussed in part 2.3.3. With the assistance of the above, the movement of atoms during so-called imaginary vibrations can be calculated. It has been attempted in Fig. 14 to clarify the movement of the atoms during this vibration (the size of the components of the movement vector... [Pg.219]

The hrst step in theoretical predictions of pathway branching are electronic structure ab initio) calculations to define at least the lowest Born-Oppenheimer electronic potential energy surface for a system. For a system of N atoms, the PES has (iN — 6) dimensions, and is denoted V Ri,R2, - , RiN-6)- At a minimum, the energy, geometry, and vibrational frequencies of stationary points (i.e., asymptotes, wells, and saddle points where dV/dRi = 0) of the potential surface must be calculated. For the statistical methods described in Section IV.B, information on other areas of the potential are generally not needed. However, it must be stressed that failure to locate relevant stationary points may lead to omission of valid pathways. For this reason, as wide a search as practicable must be made through configuration space to ensure that the PES is sufficiently complete. Furthermore, a search only of stationary points will not treat pathways that avoid transition states. [Pg.225]

In qualitative terms, the reaction proceeds via an activated complex, the transition state, located at the top of the energy barrier between reactants and products. Reacting molecules are activated to the transition state by collisions with surrounding molecules. Crossing the barrier is only possible in the forward direction. The reaction event is described by a single parameter, called the reaction coordinate, which is usually a vibration. The reaction can thus be visualized as a journey over a potential energy surface (a mountain landscape) where the transition state lies at the saddle point (the col of a mountain pass). [Pg.108]


See other pages where Potential energy surface saddle point is mentioned: [Pg.272]    [Pg.272]    [Pg.32]    [Pg.1017]    [Pg.246]    [Pg.606]    [Pg.871]    [Pg.2333]    [Pg.575]    [Pg.605]    [Pg.17]    [Pg.303]    [Pg.158]    [Pg.160]    [Pg.156]    [Pg.166]    [Pg.34]    [Pg.40]    [Pg.71]    [Pg.169]    [Pg.170]    [Pg.173]    [Pg.6]    [Pg.297]    [Pg.343]    [Pg.684]    [Pg.185]    [Pg.250]    [Pg.251]    [Pg.253]    [Pg.261]    [Pg.252]   
See also in sourсe #XX -- [ Pg.412 ]

See also in sourсe #XX -- [ Pg.316 , Pg.318 ]

See also in sourсe #XX -- [ Pg.141 , Pg.142 ]

See also in sourсe #XX -- [ Pg.461 ]

See also in sourсe #XX -- [ Pg.113 , Pg.115 ]




SEARCH



Potential-energy surfaces saddle-point structure

Saddle energy

Saddle points

Saddle-point energy

Saddle-point geometry, potential energy surfaces

Saddles

Surface potential point

Surfaces saddle point surface

© 2024 chempedia.info