Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potassium lithium treatment

Successive treatment of phenylacetylene with butyl-lithium and potassium t-butoxide leads to the ort/to-metallated phenylacetylide (182), Subsequent addition of methyl iodide or dimethyl disulphide gives the corresponding ortho-substituted phenylacetylenes, or, following appropriate potassium-magnesium or potassium-lithium exchanges, halogens can be introduced (Scheme 78). ... [Pg.48]

Alkaline treatment Based on the use of strong alkalis (such as sodium, potassium, lithium or guanidine hydroxide). [Pg.338]

The molten carbonate fuel ceU uses eutectic blends of Hthium and potassium carbonates as the electrolyte. A special grade of Hthium carbonate is used in treatment of affective mental (mood) disorders, including clinical depression and bipolar disorders. Lithium has also been evaluated in treatment of schizophrenia, schizoaffective disorders, alcoholism, and periodic aggressive behavior (56). [Pg.225]

Another synthesis of the cortisol side chain from a C17-keto-steroid is shown in Figure 20. Treatment of a C3-protected steroid 3,3-ethanedyidimercapto-androst-4-ene-ll,17-dione [112743-82-5] (144) with a tnhaloacetate, 2inc, and a Lewis acid produces (145). Addition of a phenol and potassium carbonate to (145) in refluxing butanone yields the aryl vinyl ether (146). Concomitant reduction of the C20-ester and the Cll-ketone of (146) with lithium aluminum hydride forms (147). Deprotection of the C3-thioketal, followed by treatment of (148) with y /(7-chlotopetben2oic acid, produces epoxide (149). Hydrolysis of (149) under acidic conditions yields cortisol (29) (181). [Pg.434]

A number of compounds of the types RBiY2 or R2BiY, where Y is an anionic group other than halogen, have been prepared by the reaction of a dihalo- or halobismuthine with a lithium, sodium, potassium, ammonium, silver, or lead alkoxide (120,121), amide (122,123), a2ide (124,125), carboxylate (121,126), cyanide (125,127), dithiocarbamate (128,129), mercaptide (130,131), nitrate (108), phenoxide (120), selenocyanate (125), silanolate (132), thiocyanate (125,127), or xanthate (133). Dialkyl- and diaryUialobismuthines can also be readily converted to secondary bismuthides by treatment with an alkali metal (50,105,134) ... [Pg.132]

Kyba and eoworkers prepared the similar, but not identical compound, 26, using quite a different approach. In this synthesis, pentaphenylcyclopentaphosphine (22) is converted into benzotriphosphole (23) by reduction with potassium metal in THF, followed by treatment with o "t/20-dichlorobenzene. Lithium aluminum hydride reduction of 23 affords l,2-i>/s(phenylphosphino)benzene, 24. The secondary phosphine may be deprotonated with n-butyllithium and alkylated with 3-chlorobromopropane. The twoarmed bis-phosphine (25) which results may be treated with the dianion of 24 at high dilution to yield macrocycle 26. The overall yield of 26 is about 4%. The synthetic approach is illustrated in Eq. (6.16), below. [Pg.274]

Solid alkalis Solid alkalis may be used, in principle, for the corrosion control of drum boilers at all pressures but other factors, e.g. carryover or hideout a (reversible disappearance from solution on-load), may preclude them in some cases. However, they are used for feed-line treatment only in lower pressure plant where the boiler has increased tolerance to the higher solids burden which their use entails. Sodium hydroxide or, at very low pressures, sodium carbonate, (which is hydrolysed to the hydroxide at boiler temperatures) have been used, as have potassium and lithium hydroxides and various phosphate mixtures. (For a comparison of various alkalis for this purpose see References.)... [Pg.836]

Lithium compounds are used in ceramics, lubricants, and medicine. Small daily doses of lithium carbonate are an effective treatment for bipolar (manic-depressive) disorder but scientists still do not fully understand why. Lithium soaps—the lithium salts of long-chain carboxylic acids—are used as thickeners in lubricating greases for high-temperature applications because they have higher melting points than more conventional sodium and potassium soaps. [Pg.710]

In this section primarily reductions of aldehydes, ketones, and esters with sodium, lithium, and potassium in the presence of TCS 14 are discussed closely related reductions with metals such as Zn, Mg, Mn, Sm, Ti, etc., in the presence of TCS 14 are described in Section 13.2. Treatment of ethyl isobutyrate with sodium in the presence of TCS 14 in toluene affords the O-silylated Riihlmann-acyloin-condensation product 1915, which can be readily desilylated to the free acyloin 1916 [119]. Further reactions of methyl or ethyl 1,2- or 1,4-dicarboxylates are discussed elsewhere [120-122]. The same reaction with trimethylsilyl isobutyrate affords the C,0-silylated alcohol 1917, in 72% yield, which is desilylated to 1918 [123] (Scheme 12.34). Likewise, reduction of the diesters 1919 affords the cyclized O-silylated acyloin products 1920 in high yields, which give on saponification the acyloins 1921 [119]. Whereas electroreduction on a Mg-electrode in the presence of MesSiCl 14 converts esters such as ethyl cyclohexane-carboxylate via 1922 and subsequent saponification into acyloins such as 1923 [124], electroreduction of esters such as ethyl cyclohexylcarboxylate using a Mg-electrode without Me3SiCl 14 yields 1,2-ketones such as 1924 [125] (Scheme 12.34). [Pg.281]

Reaction of the carbanion of chloromethyl phenyl sulphoxide 409 with carbonyl compounds yields the corresponding 0-hydroxy adducts 410 in 68-79% yield. Each of these compounds appears to be a single isomer (equation 242). Treatment of adducts 410 with dilute potassium hydroxide in methanol at room temperature gives the epoxy sulphoxides 411 (equation 243). The ease of this intramolecular displacement of chloride ion contrasts with a great difficulty in displacing chloride ion from chloromethyl phenyl sulphoxide by external nucleophiles . When chloromethyl methyl sulphoxide 412 is reacted with unsymmetrical ketones in the presence of potassium tcrt-butoxide in tert-butanol oxiranes are directly formed as a mixture of diastereoisomers (equation 244). a-Sulphinyl epoxides 413 rearrange to a-sulphinyl aldehydes 414 or ketones, which can be transformed by elimination of sulphenic acid into a, 8-unsaturated aldehydes or ketones (equation 245). The lithium salts (410a) of a-chloro-/ -hydroxyalkyl... [Pg.327]


See other pages where Potassium lithium treatment is mentioned: [Pg.270]    [Pg.119]    [Pg.167]    [Pg.270]    [Pg.343]    [Pg.313]    [Pg.331]    [Pg.433]    [Pg.114]    [Pg.317]    [Pg.504]    [Pg.26]    [Pg.13]    [Pg.433]    [Pg.434]    [Pg.29]    [Pg.129]    [Pg.361]    [Pg.22]    [Pg.387]    [Pg.187]    [Pg.9]    [Pg.14]    [Pg.47]    [Pg.200]    [Pg.76]    [Pg.78]    [Pg.142]    [Pg.150]    [Pg.429]    [Pg.492]    [Pg.327]    [Pg.627]    [Pg.702]    [Pg.741]    [Pg.308]    [Pg.54]    [Pg.11]    [Pg.186]    [Pg.627]    [Pg.702]   
See also in sourсe #XX -- [ Pg.569 ]




SEARCH



Lithium treatment

Lithium) potassium

© 2024 chempedia.info