Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potassium borohydride, reduction with

Potassium borohydride reduction of runanine (17) yielded dihydro-runanine (24), the H-NMR spectrum of which (Table II) exhibited a triplet (64.25), the proton bearing the hydroxyl group coupling with those of C-5 (35). The optical activity of runanine (17), [a]D —400°, was similar to that of hasubanonine (5), [a]D —214° (3) therefore, it was concluded that the ethylamine linkage must have the same configuration as hasubanonine [C-13 (R) and C-14 (S)]. From these results, structure 17 was proposed for runanine (35) however, no application of mass spectral data to the structure elucidation was presented (35). [Pg.333]

Numerous reducing agents were tried at this point unsuccessfully. For example, lithium aluminum hydride destroyed the substrate, whereas DIBAH or lithium borohydnde in THF and sodium borohydride in ethanol led to reduction of the quinoline system. On the other hand, both potassium borohydride (either with or without 18-crown-6) and zinc borohydride (with or without ethanol) produced no reaction at all. Lithium triethylborohydride resulted in de-methoxylation, and sodium borohydride in refluxing THF gave a 45% yield of diol 16 together with overreduced product. [Pg.138]

Studies of reductions with metal hydndes have concentrated on improvements in selectivity or conditions Replacement of the usual lithium aluminum hydnde-ether combination with potassium borohydride-methanol results m high yields of alcohol from ester [76] and less hazard [77] (equation 62) Reduction of a... [Pg.311]

The reduction of iminium salts can be achieved by a variety of methods. Some of the methods have been studied primarily on quaternary salts of aromatic bases, but the results can be extrapolated to simple iminium salts in most cases. The reagents available for reduction of iminium salts are sodium amalgam (52), sodium hydrosulfite (5i), potassium borohydride (54,55), sodium borohydride (56,57), lithium aluminum hydride (5 ), formic acid (59-63), H, and platinum oxide (47). The scope and mechanism of reduction of nitrogen heterocycles with complex metal hydrides has been recently reviewed (5,64), and will be presented here only briefly. [Pg.185]

The tosylhydrazone is prepared from the carbonyl compound and then reduced with lithium aluminium hydride, sodium borohydride or potassium borohydride. In this way D-glucose tosylhydrazone was converted into crystalline 1-deoxyglucitol by reduction with potassium borohydride... [Pg.152]

Colloidal metals are usually prepared by reduction of a salt with a reducing agent, such as phosphorus, acetone, tannin, or carbon monoxide. Platinum metals can also be prepared as finely divided very active blacks by reducing the metal salt in an aqueous solution of sodium or potassium borohydride. [Pg.3]

Nickel borides are usually prepared by reduction of nickel salts with sodium or potassium borohydride. Two types are used. PI nickel boride is prepared by the reaction between aqueous solutions of nickel salts and a borohy-... [Pg.4]

Ye et al. reported that the reduction of 2,4-dichlorophenyl-2-chloroethanone 1 with potassium borohydride in dimethylformamide to give 90% a-chloromethyl-2,4-dichlorobenzyl alcohol 2. Alkylation of imidazole with compound 2 in dimethyl formamide in the presence of sodium hydroxide and triethylbenzyl ammonium chloride, gave l-(2,4-dichlorophenyl-2-imidazolyl)ethanol 3 and etherification of 3 with 2,4-dichlorobenzyl chloride under the same condition, 62% yield of miconazole [9]. [Pg.7]

The MPT model was also reported to apply in a number other electroless metal deposition systems, including a) electroless Ni from a citrate-complexant solution with dimethylamine borane (DMAB) reductant, operated at pH = 7 (pH adjusted using NH4OH) and at a temperature (T) = 40 °C [33] b) electroless Au deposition [34] from a KAu(CN)2 containing solution, which utilized potassium borohydride... [Pg.230]

Nitration of 206 with a mixture of potassium nitrate and sulfuric acid yielded a mixture of dinitro derivative 240 and oxidation product 46. Heating 206 with sodium borohydride led to hydrolysis to 208 rather than to any reduction product. On the other hand, reduction with zinc in cold acetic acid provided dihydro derivative 241, whereas catalytic hydrogenation over palladium on carbon provided tetrahydro derivative 242 (Scheme 59) [90JCS(P 1) 1463]. [Pg.186]

The importance of reactions with complex, metal hydrides in carbohydrate chemistry is well documented by a vast number of publications that deal mainly with reduction of carbonyl groups, N- and O-acyl functions, lactones, azides, and epoxides, as well as with reactions of sulfonic esters. With rare exceptions, lithium aluminum hydride and lithium, sodium, or potassium borohydride are the... [Pg.216]

According to another approach, treatment of A-[2-(indol-3-yl)ethyl]-l,2,5,6-tetrahydropyridine (137), obtained from the corresponding pyridinium salt 136 by borohydride reduction, first with potassium rerf-butoxide, and then with acetic acid, led to ( )-l via key intermediate 135 in 78% yield (102). [Pg.168]

Reaction of vindoline (3) with the chloroindolenines derived from vin-cadifformine (127a), iJ -vincadifformine (133), -tabersonine (133a), or synthetic pandoline (34) (7/5, 116), followed by reduction of the resulting imines 145 and 145a (Scheme 40) with potassium borohydride, had given... [Pg.111]

Reaction of the imine-indoline products 157 and 158 with potassium borohydride in acetic acid resulted in rupture of the C-3 -C-7 bond and reduction of the resulting imonium function (Scheme 45). While the initial C-I6 -C-14 PARF imine-indolines 157 and 158 can be isolated, they are less stable on silica gel chromatography than the corresponding l -vincad-ifformine-derived C-16 -C-14 PREF compounds 145, and consequently purification of the vindoline coupling products and separation of dia-stereomers were best carried out at the indole-indoline stage (162, 163). [Pg.116]

The original procedure for the bromination-oxidation-reduction route used bromine in aqueous potassium hydroxide, followed by oxidation with nitric acid-hydrogen peroxide and reduction with alkaline ethanol. This procedure was improved by using NBS in aqueous sodium bicarbonate for the initial oxime bromination, followed by oxidation with nitric acid and final reduction of the Q -bromonitroalkane with sodium borohydride in methanol. It is possible to convert oximes to nitroalkanes via this procedure without isolating or purifying any of the intermediates. This procedure is reported to give yields of between 10 and 55 % for a range of oxime to nitroalkane conversions. ... [Pg.19]

Hydrogenation using Raney nickel is carried out under mild conditions and gives cis alkenes from internal alkynes in yields ranging from 50 to 100% [356, 357, 358, 359, 360]. Half hydrogenation of alkynes was also achieved over nickel prepared by reduction of nickel acetate with sodium borohydride (P-2 nickel, nickel boride) [349,361,362] or by reduction with sodium hydride [49], or by reduction of nickel bromide with potassium-graphite [363]. Other catalysts are palladium on charcoal [364], on barium sulfate [365, 366], on... [Pg.43]

The pyridine ring is easily reduced in the form of its quaternary salts to give hexahydro derivatives by catalytic hydrogenation [446], and to tetrahydro and hexahydro derivatives by reduction with alane aluminum hydride) [447], sodium aluminum hydride [448], sodium bis 2-methoxyethoxy)aluminum hydride [448], sodium borohydride [447], potassium borohydride [449], sodium in ethanol [444, 450], and formic acid [318]. Reductions with hydrides give predominantly 1,2,5,6-tetrahydro derivatives while electroreduction and reduction with formic acid give more hexahydro derivatives [451,452]. [Pg.56]

Refluxing of 9-fluorenone-l-carboxylic acid with zinc dust and copper sulfate in aqueous potassium hydroxide for 2.5 hours afforded 9-fluorenol-1-carboxylic acid in 94% yield [1004]. Reduction with sodium borohydride in aqueous methanol at 0-25° converted 5-ketopiperidine-2-carboxylic acid to /ra j-5-hydroxypiperidine-2-carboxylic acid in 54-61% yield [1005], On the other hand, reduction of V-benzyloxycarbonyl-5-ketopiperidine-2-carboxylic acid gave 89% yield of V-benzyloxycarbonyl-cis-5-hydroxypiperidine-2-car-boxylic acid under the same conditions [1005],... [Pg.143]

The 1-isopropoxymethyl derivative of pyrrolo-benzothiazepine 376 can be obtained from aldehyde 375 through the tosyl hydrazone followed by reduction with sodium borohydride in 2-propanol. 1-Methyl substituted 378 is available from aldehyde 375 and hydrazine monohydrate followed by potassium tert-butoxide (Scheme 76, Section 5.1.1 (2004JMC143)). [Pg.65]

Reticuline (38), one of the most important intermediates in the biosynthesis of opium alkaloids, has been synthesized in racemic form (Scheme 7) (78). 6-Methoxy-7-benzyloxyisoquinoline (39), prepared from O-benzylisovanillin via a modified Pomeranz-Fritsch isoquinoline synthesis, was treated with benzoyl chloride and potassium cyanide to obtain Reissert compound 40. Alkylation of the anion generated from 40 with 3-benzyloxy-4-methoxybenzyl chloride gave the corresponding 1-substituted Reissert compound 41 which was hydrolyzed in alkaline medium to 1-benzylisoquinoline derivative 42. Quatemarization of 42 with methyl iodide followed by sodium borohydride reduction and debenzylation led to ( )-reticuline (38) in about 25% overall yield from 39. [Pg.6]

Two alditols containing fluorine atoms, namely, 2,4-difluoro-l,3-bu-tanediols, were prepared304 by controlled reduction of ethyl 2,4-di-fluoro-3-oxobutanoate with potassium borohydride. [Pg.104]


See other pages where Potassium borohydride, reduction with is mentioned: [Pg.1183]    [Pg.1183]    [Pg.141]    [Pg.355]    [Pg.285]    [Pg.514]    [Pg.1191]    [Pg.91]    [Pg.1197]    [Pg.90]    [Pg.237]    [Pg.305]    [Pg.315]    [Pg.343]    [Pg.11]    [Pg.14]    [Pg.605]    [Pg.149]    [Pg.34]    [Pg.80]    [Pg.104]    [Pg.164]    [Pg.1201]    [Pg.218]   
See also in sourсe #XX -- [ Pg.881 , Pg.882 ]

See also in sourсe #XX -- [ Pg.881 , Pg.882 ]

See also in sourсe #XX -- [ Pg.881 , Pg.882 ]

See also in sourсe #XX -- [ Pg.881 , Pg.882 ]




SEARCH



Borohydride reductions

Borohydride, reduction with

Potassium borohydride reduction

Potassium reduction

Reduction borohydrides

Reduction with borohydrides

© 2024 chempedia.info