Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Porous materials adsorption

Physisorption (i.e., adsorption of hydrogen) of molecular hydrogen by weak van der Waals forces to the inner surface of a highly porous material. Adsorption has been studied on various nanomaterials, e.g., nanocarbons, metal organic frameworks and polymers. [Pg.314]

Myers, A.L. (2003). Equation of state for adsorption of gases and their mixtures in porous materials. Adsorption, 9, 9-16. [Pg.73]

Equation of State for Adsorption of Gases and Their Mixtures in Porous Materials, Adsorption, 9 (2003), p. 9-16. [Pg.412]

Catalytic gas-phase reactions play an important role in many bulk chemical processes, such as in the production of methanol, ammonia, sulfuric acid, and nitric acid. In most processes, the effective area of the catalyst is critically important. Since these reactions take place at surfaces through processes of adsorption and desorption, any alteration of surface area naturally causes a change in the rate of reaction. Industrial catalysts are usually supported on porous materials, since this results in a much larger active area per unit of reactor volume. [Pg.47]

Sing K S W 1998 Adsorption methods for the oharaoterization of porous materials Adv. Colloid Interface Sci. 76/77 3-11... [Pg.1897]

An interesting example of a large specific surface which is wholly external in nature is provided by a dispersed aerosol composed of fine particles free of cracks and fissures. As soon as the aerosol settles out, of course, its particles come into contact with one another and form aggregates but if the particles are spherical, more particularly if the material is hard, the particle-to-particle contacts will be very small in area the interparticulate junctions will then be so weak that many of them will become broken apart during mechanical handling, or be prized open by the film of adsorbate during an adsorption experiment. In favourable cases the flocculated specimen may have so open a structure that it behaves, as far as its adsorptive properties are concerned, as a completely non-porous material. Solids of this kind are of importance because of their relevance to standard adsorption isotherms (cf. Section 2.12) which play a fundamental role in procedures for the evaluation of specific surface area and pore size distribution by adsorption methods. [Pg.24]

This is the capillary condensation phenomenon, which partiy accounts for the hysteresis observed in adsorption profiles of porous materials. [Pg.245]

AC works by attracting and holding certain chemicals as water passes through it. AC is a highly porous material therefore, it has an extremely high surface area for contaminant adsorption. The equivalent surface area of 1 pound of AC ranges from 60 to 150 acres. AC is made of tiny clusters... [Pg.409]

Adsorption A physical process in which a molecule of a vapor or gas (adsorbate) is condensed on and taken up by the surface of a porous material (adsorbent) such as silica gel or activated carbon. [Pg.1406]

G. V. Burgess, D. H. Everett, S. Nutall. Adsorption hysteresis in porous materials. Pure Appl Chem (57 1845-1852, 1989. [Pg.74]

Adsorption is the property of certain extremely porous materials to hold vapors in the pores until the desiccant is either heated or exposed to a drier gas. The material is a solid at all times and operates alternately through drying and reactivation cycles with no change in composition. Adsorbing materials in principal use are activated Alumina and silica gel. Molecular sieves are also used. Atmospheric dew points of minus 1000°F are readily obtained using adsorption. [Pg.642]

Some manufacturers use the principle of the adsorption of a gas by a porous material such as silica gel or charcoal. Since the adsorbent is a solid and cannot migrate from the phial, these valves cannot suffer reversal of charge. [Pg.100]

Figure 5. Top Adsorption isotherms of C02 for 1-en at the indicated temperatures. Bottom Adsorption-desorption cycling of C02 for 1-en showing reversible uptake from (a) simulated air (0.39 mbar C02 and 21% 02 balanced with N2) and from (b) simulated flue gas (0.15 bar C02 balanced with N2). (c) time-dependent C02 adsorption for porous materials (A = 1-en, B = mmen-Mg2(dobpdc), C = 1, D = Mg-MOF-74, E = Zeolite 13X, F = MOF-5). (d) C02 adsorption ratio of 1-en in flue gas (after 6 min exposure to 100% RH at 21 °C) to 1-en in flue gas (Adapted from [192]). Figure 5. Top Adsorption isotherms of C02 for 1-en at the indicated temperatures. Bottom Adsorption-desorption cycling of C02 for 1-en showing reversible uptake from (a) simulated air (0.39 mbar C02 and 21% 02 balanced with N2) and from (b) simulated flue gas (0.15 bar C02 balanced with N2). (c) time-dependent C02 adsorption for porous materials (A = 1-en, B = mmen-Mg2(dobpdc), C = 1, D = Mg-MOF-74, E = Zeolite 13X, F = MOF-5). (d) C02 adsorption ratio of 1-en in flue gas (after 6 min exposure to 100% RH at 21 °C) to 1-en in flue gas (Adapted from [192]).
Materials with uniform pore structures offer a wide range of applications, including catalysis, adsorption, and separation. These materials have the benefit ofboth specific pore systems and intrinsic chemical properties [1-3]. The pores in the materials are able to host guest species and provide a pathway for molecule transportation. The skeletal pore walls provide an active and/or affinity surface to associate with guest molecules. According to the International Union of Pure and Applied Chemistry (IUPAC), porous materials can be classified into three main categories based on the diameters of their pores, that is, microporous, mesoporous, and macroporous... [Pg.209]

In view of catalytic potential applications, there is a need for a convenient means of characterization of the porosity of new catalyst materials in order to quickly target the potential industrial catalytic applications of the studied catalysts. The use of model test reactions is a characterization tool of first choice, since this method has been very successful with zeolites where it precisely reflects shape-selectivity effects imposed by the porous structure of tested materials. Adsorption of probe molecules is another attractive approach. Both types of approaches will be presented in this work. The methodology developed in this work on zeolites Beta, USY and silica-alumina may be appropriate for determination of accessible mesoporosity in other types of dealuminated zeolites as well as in hierarchical materials presenting combinations of various types of pores. [Pg.217]

As described before, the pore size of porous material ranges widely from atomic size to millimeter order. Different pore sizes are required for different applications of porous materials. Most porous materials do not have uniform pores. Pore size distribution is also an important property. Narrow pore size distribution, i.e., uniform pore size, is required for instance for filters and bioreactor beds. Mercury porosimetry and gas adsorption methods are commonly used to measure pores size and pores distribution. [Pg.358]

Fast adsorption/desorption kinetics and relatively small (<10 kj/mol) adsorption enthalpies are observed for hydrogen adsorption on many porous materials, which indicates that physisorption on porous materials is suitable for fast recharging with hydrogen [81,82], The narrowest pores make the biggest contribution to hydrogen-adsorption capacity, whereas mesopores contribute to total pore volume, but little to hydrogen capacity, and are detrimental for the overall volumetric capacity. Hence, porous materials with very narrow pores or pore-size distributions are required for enhanced hydrogen capacity at low pressures. [Pg.431]

Thomas, K.M., Hydrogen adsorption and storage on porous materials. Catal. Today 120,389-398, 2007. [Pg.436]

The physical properties of probe molecules adsorbed in the confined space of porous materials are known to vary in dependence of structural constraints on molecular motion. Detailed investigations of adsorption geometries are possible, when well-defined sites and loadings exist. This was the case for the adsorption of strongly interacting probe molecules, such as pyridine, on SiOH groups in the... [Pg.208]


See other pages where Porous materials adsorption is mentioned: [Pg.41]    [Pg.1362]    [Pg.61]    [Pg.41]    [Pg.1362]    [Pg.61]    [Pg.78]    [Pg.663]    [Pg.1875]    [Pg.176]    [Pg.209]    [Pg.243]    [Pg.1504]    [Pg.697]    [Pg.738]    [Pg.248]    [Pg.403]    [Pg.193]    [Pg.99]    [Pg.99]    [Pg.175]    [Pg.176]    [Pg.552]    [Pg.393]    [Pg.83]    [Pg.448]    [Pg.490]    [Pg.561]    [Pg.563]    [Pg.582]    [Pg.90]    [Pg.412]    [Pg.412]    [Pg.12]    [Pg.395]   


SEARCH



Adsorption materials

Adsorption, nanoporous materials porous material characterization

Gas adsorption in porous nanostructured materials

Nano porous structures adsorption materials

Porous Material Characterization by Adsorption Methods

Porous materials hydrogen adsorption

© 2024 chempedia.info