Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polythiophenes polymerization

Shi and co-workers prepared polythiophene films with different roughnesses by electrochemical polymerization of thiophene in boron trifluoride-diethyl etherate (BFEE) [42]. The highest WCA of 116° on polythiophene film was observed. To further increase the WCA, aligned polythiophene nano-tubes were synthesized using anodized aluminium oxide (AAO) as template. The WCA increased to 134° (Fig. 7). As a comparison, the WCA of polythiophene polymerized in acetonitrile solution was measured to be less than 75°. [Pg.371]

PPy Polythiophene Polythiophene polymerized on a polypyrrole coated copper electrode coating yielded copper corrosion resistance 1113... [Pg.206]

Polythiophene can be synthesized by electrochemical polymerization or chemical oxidation of the monomer. A large number of substituted polythiophenes have been prepared, with the properties of the polymer depending on the nature of the substituent group. Oligomers of polythiophene such as (a-sexithienyl thiophene) can be prepared by oxidative linking of smaller thiophene units (33). These oligomers can be sublimed in vacuum to create polymer thin films for use in organic-based transistors. [Pg.242]

Functionalized conducting monomers can be deposited on electrode surfaces aiming for covalent attachment or entrapment of sensor components. Electrically conductive polymers (qv), eg, polypyrrole, polyaniline [25233-30-17, and polythiophene/23 2JJ-J4-j5y, can be formed at the anode by electrochemical polymerization. For integration of bioselective compounds or redox polymers into conductive polymers, functionalization of conductive polymer films, whether before or after polymerization, is essential. In Figure 7, a schematic representation of an amperomethc biosensor where the enzyme is covalendy bound to a functionalized conductive polymer, eg, P-amino (polypyrrole) or poly[A/-(4-aminophenyl)-2,2 -dithienyl]pyrrole, is shown. Entrapment of ferrocene-modified GOD within polypyrrole is shown in Figure 7. [Pg.46]

In all cases of electrochemicaHy or chemically polymerized unsubstituted polypyrrole, the final polymer is intractable in both the conducting and insulating forms. In contrast, a broad number of substituted polythiophenes have been found to be processible both from solution and in the melt. The most studied of these systems ate the poly(3-alkylthiophenes) (P3AT). [Pg.37]

Polythiophenes with substituents other than alkyl groups at the 3 position have been prepared by the polymerization of substituted monomers. Many of these polymers have been substituted alkylthiophenes (8) where example side chains are (R =) —(86—89), —OCH (68), —NHC(0) (CH2) qCH (6 )) —0502(0112)30112 (90). Ohiral side chains have also been employed (91,92). Poly(3-alkoxythiophenes) (9) (93—95) and... [Pg.37]

Several attempts to use otganic polymeric semiconductors as the active component in photovoltaic devices have been reported during the last two decades. Interest in the photovoltaic properties of conjugated polymers like polyacelylcne, various derivatives of polythiophenes and poly(para-phenylene vinylene)s arose from... [Pg.271]

Here we introduce a personal point of view about the interactions between conducting polymers and electrochemistry their synthesis, electrochemical properties, and electrochemical applications. Conducting polymers are new materials that were developed in the late 1970s as intrinsically electronic conductors at the molecular level. Ideal monodimensional chains of poly acetylene, polypyrrole, polythiophene, etc. can be seen in Fig. 1. One of the most fascinating aspects of these polymeric... [Pg.308]

Polythiophene electrogeneration on a rotating disc electrode. The water content influence on polymerization and on the polymeric properties. J. Electroanal Chem., 310, 219, 1991, Fig. 9. Copyright 1991. Reprinted with permission of Elsevier Science.)... [Pg.327]

Polymerization at constant current is most convenient for controlling the thickness of the deposited film. Charges of ca. 0.3, 0.2, and 0.08 C cm-2 are required to produce 1 fim of polypyrrole,59 poly(3-methylthio-phene)60 (no data are available for polythiophene), and polyaniline 43 respectively. Although these values can reasonably be used to estimate the thicknesses of most electrochemically formed conducting polymer films, it should be noted that they have considerable (ca. 30%) uncertainties. For each polymer, the relationship between charge and film thickness can... [Pg.554]

Figure 5. Cyclic voltammograms of (a) 2,5"" -di-methyl-a-hexathiophene and (b) poly(2,2 -bithio-phene) films in acetonitrile containing 0.1 M E NCIO 103 (Reprinted from G. Zotti, G. Schia-von, A. Berlin, and G. Pagani, Electrochemistry of end-ca )ed oligothienyls-new insights into the polymerization mechanism and the charge storage, conduction and capacitive properties of polythiophene, Synth. Met. 61 (1-2) 81-87, 1993, with kind permission from Elsevier Science S.A.)... Figure 5. Cyclic voltammograms of (a) 2,5"" -di-methyl-a-hexathiophene and (b) poly(2,2 -bithio-phene) films in acetonitrile containing 0.1 M E NCIO 103 (Reprinted from G. Zotti, G. Schia-von, A. Berlin, and G. Pagani, Electrochemistry of end-ca )ed oligothienyls-new insights into the polymerization mechanism and the charge storage, conduction and capacitive properties of polythiophene, Synth. Met. 61 (1-2) 81-87, 1993, with kind permission from Elsevier Science S.A.)...
Several other organoboron polymers have been developed by various synthetic strategies and utilized to construct polymeric sensing systems for cations, dopamine, saccharides, and so on. Fabre and co-workers have reported the preparation of a conjugated trifluoroborate-substituted polythiophene system for sensing cations such as... [Pg.30]

SCHEME 2.60 Synthesis of polythiophene via chemical oxidation polymerization. [Pg.185]

First, the above-mentioned sensors have major drawbacks, as the detection and recognition event is a function of the nature and characteristics of the side chains, and the side chain functionalization of the CP requires advanced synthesis and extensive purification of numerous monomeric and polymeric derivatives. Second, this generation of sensors primarily employed optical absorption as the source for detection, resulting in lower sensitivity when compared with other sensing systems for biological processes. However, the use of fluorescence detection within these sensing systems could justify continued development. More recent examples include a fluorescent polythiophene derivative with carbohydrate functionalized side chains for the detection of different bacteria [15] and novel synthesis schemes for ligand-functionalization of polythiophenes [16]. [Pg.398]

M. G. Kanatzidis, M. Humbbard, L. M. Tonge, T. J. Marks, H. 0. Marcy, C. R. Kannewurf, In situ intercalative polymerization as a route to layered conducting polymer-inorganic matrix microlaminates, polypyrrole and polythiophene in FeOCl, Synthetic Metals, vol. 28, pp. 89-95,1989. [Pg.114]

ETEROAROMATics FURAN AND THIOPHENE. The chemical transformation of thiophene at high pressure has not been studied in detail. However, an infrared [441,445] study has placed the onset of the reaction at 16 GPa when the sample becomes yellow-orange and the C—H stretching modes involving sp carbon atoms are observed. This reaction threshold is lower than in benzene, as expected for the lower stability of thiophene. The infrared spectrum of the recovered sample differs from that of polythiophene, and the spectral characteristics indicate that it is probably amorphous. Also, the thiophene reaction is extremely sensitive to photochemical effects as reported by Shimizu and Matsunami [446]. Thiophene was observed to transform into a dark red material above 8 GPa when irradiated with 50 mW of the 514.5-nm Ar+ laser line. The reaction was not observed without irradiation. This material was hypothesized to be polythiophene because the same coloration is reported for polymeric films prepared by electrochemical methods, but no further characterization was carried out. [Pg.201]

Polyacetylene has good inert atmospheric thermal stability but oxidizes easily in the presence of air. The doped samples are even more susceptible to air. Polyacetylene films have a lustrous, silvery appearance and some flexibility. Other polymers have been found to be conductive. These include poly(p-phenylene) prepared by the Freidel-Crafts polymerization of benzene, polythiophene and derivatives, PPV, polypyrrole, and polyaniline. The first polymers commercialized as conductive polymers were polypyrrole and polythiophene because of their greater stability to air and the ability to directly produce these polymers in a doped form. While their conductivities (often on the order of 10" S/m) are lower than that of polyacetylene, this is sufficient for many applications. [Pg.588]

Kraft et al., 1998 Lowen and Van Dyke, 1990 Wei and Tian, 1993], Reactions other than oxidative polymerization are also being studied for producing polyaniline and polythiophene [Kraft et al., 1998 Loewe et al., 2001]. An example is the Pd-catalyzed dehydrohalogenation between aryl dihalides and aryl primary diamines to synthesize polyanilines [Kanbara et al.,... [Pg.166]

Many other polymeric systems are of interest in polymer LEDs. Polythiophenes have been known for some time but it was not until improved synthetic methods were developed that their potential was realised. The process involves the reaction of the substituted monomer with FeClj in chloroform solution. After polymerisation has occurred the product precipitates and is isolated and washed. Further special purification methods are required to obtain satisfactorily pure materials. One product, of commercial interest, developed by Bayer is poly(ethylenedioxy)thiophene, known as PEDOT (3.110). This product when doped with polystyrene sulfonate, sold as Baytron P, has been found to be effective as a conducting, hole-injecting layer on the ITO electrode. ... [Pg.236]

Polythiophenes functionalized with monosaccharides have been evaluated for their ability to detect the influenza virus and E. coli (Baek et al. 2000). Copolymers of thiophene acetic acid 10 and carbohydrate-modified thiophenes 11 have been prepared via iron(III) chloride mediated polymerization. Addition of influenza virus to a sialic acid containing copolymer resulted in a blue shift of the polymer absorption maximum, resulting in an orange to red chromatic transition. Mannose-containing polythiophenes underwent color changes upon the addition of the lectin ConA or E. coli cells that contain cell surface mannose-binding receptors. A similar biotinylated pol5hhiophene afforded a streptavidin responsive material (Paid and Leclerc 1996). [Pg.324]

A modular and flexible approach to polythiophene sensors based on the polymerization of a thiophene-activated ester has been reported (Bernier et al. 2002). Subsequent reaction of the pol5mierized NHS ester with a variety of diamines permits the synthesis of sensors for different analytes from a common platform. For example, reaction of the NHS polymer with an aminomethyl-modified 15-crown-5 derivative yielded a polymer that underwent color changes in the presence of alkah cations (Fig. 12.14). [Pg.324]

Quinaxoline-containing monomer 14 was electrochemically polymerized to yield a polythiophene that changed from a yellow to orange color upon the addition of fluoride or pyrophosphate anions (Aldakov and Anzenbacher 2004). Analyte binding could be detected spectroscopically and electrochemically. [Pg.328]


See other pages where Polythiophenes polymerization is mentioned: [Pg.1034]    [Pg.1034]    [Pg.245]    [Pg.246]    [Pg.246]    [Pg.23]    [Pg.39]    [Pg.295]    [Pg.582]    [Pg.472]    [Pg.331]    [Pg.336]    [Pg.361]    [Pg.567]    [Pg.6]    [Pg.16]    [Pg.338]    [Pg.333]    [Pg.765]    [Pg.211]    [Pg.216]    [Pg.624]    [Pg.634]    [Pg.124]    [Pg.151]    [Pg.618]    [Pg.323]    [Pg.96]    [Pg.97]   


SEARCH



Chain-growth polymerization polythiophenes

Chemical polymerization polythiophene synthesis

Chemically polymerized polythiophene

Electrochemically polymerized polythiophene

Polythiophen

Polythiophene

Polythiophene films, electrochemical polymerization

Polythiophene oxidative chemical polymerizations

Polythiophenes

Polythiophenes -mediated polymerization

Polythiophenes Yamamoto polymerization

Polythiophenes chemical polymerization

© 2024 chempedia.info