Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polysulfone characteristics

These solvents include tetrahydrofuran (THF), 1,4-dioxane, chloroform, dichioromethane, and chloroben2ene. The relatively broad solubiHty characteristics of PSF have been key in the development of solution-based hoUow-fiber spinning processes in the manufacture of polysulfone asymmetric membranes (see Hollow-fibermembranes). The solvent Hst for PES and PPSF is short because of the propensity of these polymers to undergo solvent-induced crysta11i2ation in many solvents. When the PES stmcture contains a small proportion of a second bisphenol comonomer, as in the case of RADEL A (Amoco Corp.) polyethersulfone, solution stabiHtyis much improved over that of PES homopolymer. [Pg.467]

For reasons that are not fiiUy understood, PPSF exhibits generally improved compatibiUty characteristics over either PSF or PES in a number of systems. An example of this is blends of PPSF with polyaryletherketones (39,40). These blends form extremely finely dispersed systems with synergistic strength, impact, and environmental stress cracking resistance properties. Blends of PPSF with either PSF or PES are synergistic in the sense that they exhibit the super-toughness characteristic of PPSF at PSF or PES contents of up to 35 wt % (33,34). The miscibility of PPSF with a special class of polyimides has been discovered and documented (41). The miscibility profile of PPSF with high temperature (T > 230° C) polysulfones has been reported (42). [Pg.469]

Proprietary blend formulations based on polysulfone, polyethersulfone, and polyphenylsulfone are sold commercially by Amoco Corporation to meet various end use requirements. The blends based on polysulfone are sold under the MINDEL trademark. A glass fiber-reinforced blend based on PES is offered under the trade name RADEL AG-360. This offers most of the performance characteristics of 30% glass fiber-reinforced polyethersulfone but at a lower cost. Two blend product lines are offered based on PPSF. These are designated as the RADEL R-4000 and R-7000 series of products. The former is a lower cost alternative to RADEL R PPSF homopolymer offering most of the performance attributes unique to PPSF. The R-7000 series of resins have been formulated for use in aircraft interiors for civil air transport. They exhibit a very high degree of resistance to flammabihty and smoke release. [Pg.469]

An excellent review of composite RO and nanofiltration (NE) membranes is available (8). These thin-fHm, composite membranes consist of a thin polymer barrier layer formed on one or more porous support layers, which is almost always a different polymer from the surface layer. The surface layer determines the flux and separation characteristics of the membrane. The porous backing serves only as a support for the barrier layer and so has almost no effect on membrane transport properties. The barrier layer is extremely thin, thus allowing high water fluxes. The most important thin-fHm composite membranes are made by interfacial polymerization, a process in which a highly porous membrane, usually polysulfone, is coated with an aqueous solution of a polymer or monomer and then reacts with a cross-linking agent in a water-kniniscible solvent. [Pg.144]

Polymerization Solvent. Sulfolane can be used alone or in combination with a cosolvent as a polymerization solvent for polyureas, polysulfones, polysUoxanes, polyether polyols, polybenzimidazoles, polyphenylene ethers, poly(l,4-benzamide) (poly(imino-l,4-phenylenecarbonyl)), sUylated poly(amides), poly(arylene ether ketones), polythioamides, and poly(vinylnaphthalene/fumaronitrile) initiated by laser (134—144). Advantages of using sulfolane as a polymerization solvent include increased polymerization rate, ease of polymer purification, better solubilizing characteristics, and improved thermal stabUity. The increased polymerization rate has been attributed not only to an increase in the reaction temperature because of the higher boiling point of sulfolane, but also to a decrease in the activation energy of polymerization as a result of the contribution from the sulfonic group of the solvent. [Pg.70]

Lyons and coworkers studied the ESR spectra of bakelite polysulfone [—CgH4— O—CgH4—SO2—CgH4—O—CgH4—C(CH3)2—] y-irradiated at 77 K and found features characteristic of at least four radicals, the cyclohexadienyl radical, formed from addition to the aromatic ring, methylene groups (— CH2) formed from H abstraction from the methyl group, phenoxy radicals and peroxy radicals. [Pg.913]

Polysulfones (PSU) and polyphenylsulfones (PPSU) can be modified by alloying with ABS, PBT, PC or proprietary polymers. The main sought-after characteristics are lower cost and easier processing, combined with a good balance of mechanical, thermal and chemical properties. [Pg.639]

This paper has provided the reader with an introduction to a class of polymers that show great potential as reverse osmosis membrane materials — poly(aryl ethers). Resistance to degradation and hydrolysis as well as resistance to stress Induced creep make membranes of these polymers particularly attractive. It has been demonstrated that through sulfonation the hydrophilic/hydrophobic, flux/separation, and structural stability characteristics of these membranes can be altered to suit the specific application. It has been Illustrated that the nature of the counter-ion of the sulfonation plays a role in determining performance characteristics. In the preliminary studies reported here, one particular poly(aryl ether) has been studied — the sulfonated derivative of Blsphenol A - polysulfone. This polymer was selected to serve as a model for the development of experimental techniques as well as to permit the investigation of variables... [Pg.345]

Adhesives have been classified according to their applications. Epoxy is a compatible adhesive for stainless steel and ceramics, as used in the piezoelectric motor industry. Epoxy adhesives of different characteristics are found. Epoxy-polysulfone and epoxy-phenolics both exhibit thermosetting properties, providing stronger bonding properties with ceramics. [Pg.140]

L.M. Robeson, A. Noshay, M. Matzner and C.N. Merian, Physical Property Characteristics of Polysulfone/poly(dimethyl siloxane) Block Copolymers, Angew. Makro-mol. Chem. 29, 47 (1973). [Pg.352]

Table 4.3 shows the permselectivity characteristics of pure, semicrystalline PEO films [76]. The selectivity characteristics for 02/N2 are rather similar to those for silicone rubber and natural rubber shown in Table 4.2. However, the values of permselectivity for C02 relative to the various light gases shown are all much higher than Table 4.2 shows for the rubbery polymers listed there and even for polysulfone except for C02/CH4. Comparison of the data in Tables 4.2 and 4.3 makes it clear that this high permselectivity of PEO stems from its high solubility selectivity for C02 versus other gases this is augmented by modest values of diffusivity selectivity. Data in Table 4.4 for the C02/N2 pair illustrate that this effect can be translated into various block-copolymer structures when the PEO content is high enough to ensure it is the continuous phase. In fact, nearly all these materials have higher permselectivity and solubility selectivity for C02/N2 than does pure PEO (see Table 4.3) however, the diffusion selectivity for these copolymers is much closer to, or even less than, unity than seen for pure PEO. Furthermore, the copolymers all have much higher absolute permeability coefficients than does PEO. Table 4.3 shows the permselectivity characteristics of pure, semicrystalline PEO films [76]. The selectivity characteristics for 02/N2 are rather similar to those for silicone rubber and natural rubber shown in Table 4.2. However, the values of permselectivity for C02 relative to the various light gases shown are all much higher than Table 4.2 shows for the rubbery polymers listed there and even for polysulfone except for C02/CH4. Comparison of the data in Tables 4.2 and 4.3 makes it clear that this high permselectivity of PEO stems from its high solubility selectivity for C02 versus other gases this is augmented by modest values of diffusivity selectivity. Data in Table 4.4 for the C02/N2 pair illustrate that this effect can be translated into various block-copolymer structures when the PEO content is high enough to ensure it is the continuous phase. In fact, nearly all these materials have higher permselectivity and solubility selectivity for C02/N2 than does pure PEO (see Table 4.3) however, the diffusion selectivity for these copolymers is much closer to, or even less than, unity than seen for pure PEO. Furthermore, the copolymers all have much higher absolute permeability coefficients than does PEO.
The blends of polysulfone with the a-methyl styrene polymers are immiscible, as evidenced by the double glass-transition temperatures in Table II. To improve the miscibility characteristics, polysulfone was modified in two ways. First, 25% of the bisphenol A was replaced by monomer I which contains a pendant ester group and, when no improvement resulted, the whole 50% of the bisphenol A was replaced. Again, the blends remain immiscible as evidenced from Figures 4 and 5 and from Table II. Further, the presence of the pendant ester group in polymer C does not improve the miscibility picture even though one would expect a favorable contribution from the carbonyl group on account of the miscibility of polycarbonate with the a-methyl styrene polymers. [Pg.559]

Flan, M., and Bhattacharyya, D. (1995), Changes in morphology and transport characteristics of polysulfone membranes prepared by different demixing conditions, / Membr. Sci., 98,191-200. [Pg.1125]


See other pages where Polysulfone characteristics is mentioned: [Pg.251]    [Pg.252]    [Pg.251]    [Pg.252]    [Pg.460]    [Pg.463]    [Pg.463]    [Pg.467]    [Pg.468]    [Pg.358]    [Pg.913]    [Pg.48]    [Pg.457]    [Pg.664]    [Pg.252]    [Pg.95]    [Pg.305]    [Pg.225]    [Pg.76]    [Pg.460]    [Pg.463]    [Pg.463]    [Pg.467]    [Pg.468]    [Pg.1333]    [Pg.498]    [Pg.133]    [Pg.377]    [Pg.295]    [Pg.306]    [Pg.308]    [Pg.310]    [Pg.313]    [Pg.256]   
See also in sourсe #XX -- [ Pg.284 ]




SEARCH



Polysulfones

© 2024 chempedia.info