Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polystyrene charging

Methylene Chloride Fractionation of Cross-Coupled 1. 2 and 7. A sample of the block polymer (above 0.50g) was dissolved in 10 mL of methylene chloride. The soluton was stored at 2 C for 2 days. A polymer methylene chloride complex precipitate formed which was removed by filtration at 2aC. The precipitate was then heated at 50 to drive off the methylene chloride. The dried polymer weighed 0.43g and contained (based on IR analysis) 58% by weight of poly(phenylene oxide) and 42% by weight of polystyrene. Analysis of the filtrate after evaporation of the methylene chloride established the presence of a residue containing 17% polyphenylene oxide and 83% polystyrene. On the basis of these results, at least 72% of the initial polystyrene charged to the reaotion medium was calculated as having been incorporated into an acyl-coupled polyphenylene oxide-polystyrene block polymer. [Pg.196]

Figure 7. Linear free energy relations and contact charging. The anils charge positively against steel, 0. The substituted polystyrenes charge negatively against zinc powder, 0. Figure 7. Linear free energy relations and contact charging. The anils charge positively against steel, 0. The substituted polystyrenes charge negatively against zinc powder, 0.
We will focus on one experimental study here. Monovoukas and Cast studied polystyrene particles witli a = 61 nm in potassium chloride solutions [86]. They obtained a very good agreement between tlieir observations and tire predicted Yukawa phase diagram (see figure C2.6.9). In order to make tire comparison tliey rescaled the particle charges according to Alexander et al [43] (see also [82]). At high electrolyte concentrations, tire particle interactions tend to hard-sphere behaviour (see section C2.6.4) and tire phase transition shifts to volume fractions around 0.5 [88]. [Pg.2687]

Alternatively the ion exchanger may be a synthetic polymer, for example a sulphonated polystyrene, where the negative charges are carried on the —SO3 ends, and the interlocking structure is built up by cross-linking between the carbon atoms of the chain. The important property of any such solid is that the negative charge is static—a part of the solid—whilst the positive ions can move from their positions. Suppose, for example, that the positive ions are... [Pg.274]

Biosilon Nunc, Denmark 160-300 polystyrene, negative charge... [Pg.231]

The anion-selective (AX) membranes (Eig. 2b) also consist of cross-linked polystyrene but have positively charged quaternary ammonium groups chemically bonded to most of the phenyl groups in the polystyrene instead of the negatively charged sulfonates. In this case the counterions are negatively... [Pg.172]

Let us first assume that we have a spherical particle with a radius of 5 p.m similar to an idealized toner particle, which is comprised of polystyrene, in contact with an electrically conducting substrate. A typical electric charge on a toner particle of that size is of the order of 10" " C. The Hamaker coefficient (Eq. 15) for such as system would be about 1.5 eV. [Pg.175]

Figures 12-12 and 12-13 document that trap-free SCL-conduction can, in fact, also be observed in the case of electron transport. Data in Figure 12-12 were obtained for a single layer of polystyrene with a CF -substituted vinylquateiphenyl chain copolymer, sandwiched between an ITO anode and a calcium cathode and given that oxidation and reduction potentials of the material majority curriers can only be electrons. Data analysis in terms of Eq. (12.5) yields an electron mobility of 8xl0 ycm2 V 1 s . The rather low value is due to the dilution of the charge carrying moiety. The obvious reason why in this case no trap-limited SCL conduction is observed is that the ClVquatciphenyl. substituent is not susceptible to chemical oxidation. Figures 12-12 and 12-13 document that trap-free SCL-conduction can, in fact, also be observed in the case of electron transport. Data in Figure 12-12 were obtained for a single layer of polystyrene with a CF -substituted vinylquateiphenyl chain copolymer, sandwiched between an ITO anode and a calcium cathode and given that oxidation and reduction potentials of the material majority curriers can only be electrons. Data analysis in terms of Eq. (12.5) yields an electron mobility of 8xl0 ycm2 V 1 s . The rather low value is due to the dilution of the charge carrying moiety. The obvious reason why in this case no trap-limited SCL conduction is observed is that the ClVquatciphenyl. substituent is not susceptible to chemical oxidation.
The relative selectivities of strongly acid and strongly basic polystyrene resins, with about 8 per cent DVB, for singly charged ions are summarised in Table 7.2. It should be noted that the relative selectivities for certain ions may vary with a change in the extent of cross-linking of the resin for example, with a 10 per cent DVB resin the relative selectivity values for Li+ and Cs+ ions are 1.00 and 4.15, respectively. [Pg.191]

A recent development is the finishing of polystyrene chips for packaging sensitive goods to avoid electrostatic charging. [Pg.210]

From an analysis of data for polypyrrole, Albery and Mount concluded that the high-frequency semicircle was indeed due to the electron-transfer resistance.203 We have confirmed this using a polystyrene sulfonate-doped polypyrrole with known ion and electron-transport resistances.145 The charge-transfer resistance was found to decrease exponentially with increasing potential, in parallel with the decreasing electronic resistance. The slope of 60 mV/decade indicates a Nemstian response at low doping levels. [Pg.583]

Most frequently, SEC with dextran-, pullulan-, or polystyrene calibration standards has been used to characterize the molecular properties of xylans. However, as for viscometric studies [108], a sufficient solvent ionic strength is a prerequisite for useful SEC measurements of charged polysaccharides, including glucuronoxylans [111-113]. An advantage of the SEC technique is that the presence of protein and phenolic components or oxidative changes can be detected by simultaneous ultraviolet (UV) detection. [Pg.16]

Process flow for a typical batch-mass polystyrene process(1) is shown in Figure 1. Styrene monomer is charged to the low conversion prepolymerization reactor with catalyst and other additives, and the temperature is increased stepwise until the desired conversion is reached. It is then transferred into the press. Polycycles are 6 to 14 hours in the low conversion reactor, and 16 to 24 hours in the press. At completion, the cakes are then cooled with water and removed from the press to be ground and then (usually) extruded into pellets. [Pg.73]

Garda-Salinas M. J., Romero-Cano M. S., de las Nieves F. J.. Zeta potential study of a polystyrene latex with variable surface charge influence on the electroviscous coefficient. Progr Colloid Polym Sci (2000) 115 112-116. [Pg.112]

Electrophoresis measurements provide a qualitative indication of the assembly of polymer multilayers on colloids [49,50], The -potential as a function of polyelectrolyte layer number for negatively charged polystyrene (PS) particles coated with poly(diallyldimethylam-monium chloride) (PDADMAC) and poly(styrenesulfonate) (PSS) are displayed in Figure... [Pg.510]

FIG. 2 -potential as a function of layer number for PDADMAC/PSS multilayers on sulfate-stabilized polystyrene (PS) latices. The multilayers were assembled onto the negatively charged PS latices ( -potential of ca. -65 mV, layer number = 0) by the consecutive deposition of PDADMAC (odd layers) and PSS (even layers). Positive values are observed for PDADMAC deposition, and negative values for PSS adsorption. The alternating values are characteristic of stepwise growth of multilayer films on colloids. [Pg.510]


See other pages where Polystyrene charging is mentioned: [Pg.242]    [Pg.590]    [Pg.288]    [Pg.549]    [Pg.231]    [Pg.357]    [Pg.139]    [Pg.172]    [Pg.262]    [Pg.2030]    [Pg.2030]    [Pg.2030]    [Pg.103]    [Pg.162]    [Pg.541]    [Pg.205]    [Pg.187]    [Pg.551]    [Pg.551]    [Pg.373]    [Pg.584]    [Pg.589]    [Pg.84]    [Pg.60]    [Pg.45]    [Pg.51]    [Pg.229]    [Pg.233]    [Pg.506]    [Pg.508]    [Pg.297]    [Pg.766]    [Pg.188]    [Pg.630]   
See also in sourсe #XX -- [ Pg.490 ]




SEARCH



Charge-transfer complexes polystyrene

Charge-transfer oxygen-polystyrene complexes

Charged-polystyrene

Polystyrene triboelectric charging

© 2024 chempedia.info