Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polypeptide tertiary structure

On a larger scale, the unique folding and structure of one complete polypeptide chain is termed the tertiary structure of protein molecules. The difference between local secondary structure and complete polypeptide tertiary structure is arbitrary and sometimes of little practical difference. [Pg.17]

Tertiary structure refers to the folding of the domains and their final arrangement in the polypeptide. Tertiary structure is stabilized by disulfide bonds, hydrophobic interactions, hydrogen bonds, and ionic bonds. [Pg.470]

Construction of Polypeptide Tertiary Structure by the Template-Assisted Synthesis... [Pg.181]

Figure 1.1 The amino acid sequence of a protein s polypeptide chain is called Its primary structure. Different regions of the sequence form local regular secondary structures, such as alpha (a) helices or beta (P) strands. The tertiary structure is formed by packing such structural elements into one or several compact globular units called domains. The final protein may contain several polypeptide chains arranged in a quaternary structure. By formation of such tertiary and quaternary structure amino acids far apart In the sequence are brought close together in three dimensions to form a functional region, an active site. Figure 1.1 The amino acid sequence of a protein s polypeptide chain is called Its primary structure. Different regions of the sequence form local regular secondary structures, such as alpha (a) helices or beta (P) strands. The tertiary structure is formed by packing such structural elements into one or several compact globular units called domains. The final protein may contain several polypeptide chains arranged in a quaternary structure. By formation of such tertiary and quaternary structure amino acids far apart In the sequence are brought close together in three dimensions to form a functional region, an active site.
Several motifs usually combine to form compact globular structures, which are called domains. In this book we will use the term tertiary structure as a common term both for the way motifs are arranged into domain structures and for the way a single polypeptide chain folds into one or several domains. In all cases examined so far it has been found that if there is significant amino acid sequence homology in two domains in different proteins, these domains have similar tertiary structures. [Pg.29]

The fundamental unit of tertiary structure is the domain. A domain is defined as a polypeptide chain or a part of a polypeptide chain that can fold independently into a stable tertiary structure. Domains are also units of function. Often, the different domains of a protein are associated with different functions. For example, in the lambda repressor protein, discussed in Chapter 8, one domain at the N-terminus of the polypeptide chain binds DNA, while a second domain at the C-terminus contains a site necessary for the dimerization of two polypeptide chains to form the dimeric repressor molecule. [Pg.29]

These predictive methods are very useful in many contexts for example, in the design of novel polypeptides for the identification of possible antigenic epitopes, in the analysis of common motifs in sequences that direct proteins into specific organelles (for instance, mitochondria), and to provide starting models for tertiary structure predictions. [Pg.352]

When the polypeptide chains of protein molecules bend and fold in order to assume a more compact three-dimensional shape, a tertiary (3°) level of structure is generated (Figure 5.9). It is by virtue of their tertiary structure that proteins adopt a globular shape. A globular conformation gives the lowest surface-to-volume ratio, minimizing interaction of the protein with the surrounding environment. [Pg.118]

Many proteins consist of two or more interacting polypeptide chains of characteristic tertiary structure, each of which is commonly referred to as a subunit of the protein. Subunit organization constitutes another level in the hierarchy of protein structure, defined as the protein s quaternary (4°) structure (Figure 5.10). Questions of quaternary structure address the various kinds of subunits within a protein molecule, the number of each, and the ways in which they interact with one another. [Pg.118]

The folding of a single polypeptide chain in three-dimensional space is referred to as its tertiary structure. As discussed in Section 6.2, all of the information needed to fold the protein into its native tertiary structure is contained within the primary structure of the peptide chain itself. With this in mind, it was disappointing to the biochemists of the 1950s when the early protein structures did not reveal the governing principles in any particular detail. It soon became apparent that the proteins knew how they were supposed to fold into tertiary... [Pg.171]

The secondary and tertiary structures of myoglobin and ribonuclease A illustrate the importance of packing in tertiary structures. Secondary structures pack closely to one another and also intercalate with (insert between) extended polypeptide chains. If the sum of the van der Waals volumes of a protein s constituent amino acids is divided by the volume occupied by the protein, packing densities of 0.72 to 0.77 are typically obtained. This means that, even with close packing, approximately 25% of the total volume of a protein is not occupied by protein atoms. Nearly all of this space is in the form of very small cavities. Cavities the size of water molecules or larger do occasionally occur, but they make up only a small fraction of the total protein volume. It is likely that such cavities provide flexibility for proteins and facilitate conformation changes and a wide range of protein dynamics (discussed later). [Pg.181]

Two polypeptides, A and B, have similar tertiary structures, but A normally exists as a monomer, whereas B exists as a tetramer, B4. What differences might be expected in the amino acid composition of A versus B ... [Pg.207]

Collagen, the principal fibrous protein in mammalian tissue, has a tertiary structure made up of twisted a-helices. Three polypeptide chains, each of which is a left-handed helix, are twisted into a right-handed super helix to form an extremely strong tertiary structure. It has remarkable tensile strength, which makes it important in the structure of bones, tendons, teeth, and cartilage. [Pg.628]

Proteins are polymers made of amino acid units. The primary structure of a polypeptide is the sequence of amino acid residues secondary structure is the formation of helices and sheets tertiary structure is the folding into a compact unit quaternary structure is the packing of individual protein units together. [Pg.893]

Figure 5-6. Examples of tertiary structure of proteins. Top The enzyme triose phosphate isomerase. Note the elegant and symmetrical arrangement of alternating p sheets and a helices. (Courtesy of J Richardson.) Bottom Two-domain structure of the subunit of a homodimeric enzyme, a bacterial class II HMG-CoA reductase. As indicated by the numbered residues, the single polypeptide begins in the large domain, enters the small domain, and ends in the large domain. (Courtesy ofC Lawrence, V Rod well, and C Stauffacher, Purdue University.)... Figure 5-6. Examples of tertiary structure of proteins. Top The enzyme triose phosphate isomerase. Note the elegant and symmetrical arrangement of alternating p sheets and a helices. (Courtesy of J Richardson.) Bottom Two-domain structure of the subunit of a homodimeric enzyme, a bacterial class II HMG-CoA reductase. As indicated by the numbered residues, the single polypeptide begins in the large domain, enters the small domain, and ends in the large domain. (Courtesy ofC Lawrence, V Rod well, and C Stauffacher, Purdue University.)...
Tertiary structure concerns the relationships between secondary structural domains. Quaternary structure of proteins with two or more polypeptides (oligomeric proteins) is a feature based on the spatial relationships between various types of polypeptides. [Pg.39]

Amino acid sequences of eleven homologous sea anemone polypeptides have been elucidated. All possess three disulfide bonds. The six half-cysteine residues always occur in the same positions (7,8). Initial studies concerning the toxin secondary and tertiary structures relied upon circular dichroism, laser Raman, and, to a lesser extent, fluorescence spectral measurements (15—18). The circular dichroism spectra of the four toxins so far examined are essentially superimpos-able and thus indicate a common secondary structure. The only peak observed, a negative ellipticity at 203 nm, largely results from a non-regular ("random")... [Pg.280]

Each protein has a unique three-dimensional shape called its tertiary structure. The tertiary structure is the result of the bends and folds that a polypeptide chain adopts to achieve the most stable structure for the protein. As an analogy, consider the cord in Figure 13-39 that connects a computer to its keyboard. The cord can be pulled out so that it is long and straight this corresponds to its primary structure. The cord has a helical region in its center this is its secondary structure. In addition, the helix may be twisted and folded on top of itself This three-dimensional character of the cord is its tertiary structure. [Pg.950]

Figure 1.3 Folding of a polypeptide chain illustrating the hierarchy of protein structure from primary structure through secondary structure and tertiary structure. Figure 1.3 Folding of a polypeptide chain illustrating the hierarchy of protein structure from primary structure through secondary structure and tertiary structure.

See other pages where Polypeptide tertiary structure is mentioned: [Pg.29]    [Pg.38]    [Pg.22]    [Pg.18]    [Pg.29]    [Pg.38]    [Pg.22]    [Pg.18]    [Pg.529]    [Pg.89]    [Pg.351]    [Pg.355]    [Pg.388]    [Pg.118]    [Pg.161]    [Pg.183]    [Pg.184]    [Pg.412]    [Pg.129]    [Pg.681]    [Pg.948]    [Pg.969]    [Pg.1026]    [Pg.427]    [Pg.3]    [Pg.31]    [Pg.42]    [Pg.287]    [Pg.950]    [Pg.140]    [Pg.318]    [Pg.698]    [Pg.6]    [Pg.25]   
See also in sourсe #XX -- [ Pg.4 , Pg.213 ]

See also in sourсe #XX -- [ Pg.4 , Pg.213 ]

See also in sourсe #XX -- [ Pg.1143 , Pg.1144 , Pg.1144 , Pg.1145 ]




SEARCH



Polypeptides, structure

Structures Tertiary structure

Tertiary structure

© 2024 chempedia.info