Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers reactive species

Block and graft copolymerization can also be initiated in indirect modes. Here, light is absorbed by independent initiator molecules that are present in the reaction system but are not incorporated into the polymer. Reactive species formed in this way interact with the polymer so as to generate free radical sites... [Pg.326]

All of the reactions listed in Table 6.1 produce free radicals, so we are presented with a number of alternatives for initiating a polymerization reaction. Our next concern is in the fate of these radicals or, stated in terms of our interest in polymers, the efficiency with which these radicals initiate polymerization. Since these free radicals are relatively reactive species, there are a variety of... [Pg.350]

Sonochemistry is also proving to have important applications with polymeric materials. Substantial work has been accomplished in the sonochemical initiation of polymerisation and in the modification of polymers after synthesis (3,5). The use of sonolysis to create radicals which function as radical initiators has been well explored. Similarly the use of sonochemicaHy prepared radicals and other reactive species to modify the surface properties of polymers is being developed, particularly by G. Price. Other effects of ultrasound on long chain polymers tend to be mechanical cleavage, which produces relatively uniform size distributions of shorter chain lengths. [Pg.263]

Multiphoton processes are also undoubtedly involved in the photodegradation of polymers in intense laser fields, eg, using excimer lasers (13). Moreover, multiphoton excitation during pumping can become a significant loss factor in operation of dye lasers (26,27). The photochemically reactive species may or may not be capable of absorption of the individual photons which cooperate to produce multiphoton excitation, but must be capable of utilising a quantum of energy equal to that of the combined photons. Multiphoton excitation thus may be viewed as an exception to the Bunsen-Roscoe law. [Pg.389]

Sihcate solutions of equivalent composition may exhibit different physical properties and chemical reactivities because of differences in the distributions of polymer sihcate species. This effect is keenly observed in commercial alkah sihcate solutions with compositions that he in the metastable region near the solubihty limit of amorphous sihca. Experimental studies have shown that the precipitation boundaries of sodium sihcate solutions expand as a function of time, depending on the concentration of metal salts (29,58). Apparently, the high viscosity of concentrated alkah sihcate solutions contributes to the slow approach to equihbrium. [Pg.6]

On the organic side of the interface, chemical bonds are formed between the organofunctional R group of the silane and the reactive species in the polymer matrix. For example, a methacrylate- or styryl-functional silane reacts with polyesters copolymerized with styrene or similar monomers, while amino- or chloroalkyl-functional silanes are unsuitable in this particular case. Polybutadiene... [Pg.408]

Polymer supported reagents, catalysts, protecting groups, and mediators can be used in place of the corresponding small molecule materials (Sherrington, 1991 Sundell and Nasman, 1993). The reactive species is tightly bound to a macromolecular support which immobilizes it. This generally makes toxic, noxious, or corrosive materials much safer. The use of polystyrene sulfonic acid catalyst for the manufacture of methyl r-butyl... [Pg.37]

Reactive species can be generated prior to monomer exposure (preirradiation grafting), during contact with monomer, or, after the polymer surface has been saturated with monomer and isolated (postirradiation grafting). The radiation-induced (y-ray and EB) graft copolymerization of AA and vinyl acetate monomer onto PE surface has been reported [170]. The grafted sheets show excellent bonding with an epoxy adhesive and enhanced adhesion with aluminum. [Pg.871]

Although more studies need to be performed to study the scope and generality of this system, the use of amine hydrochloride salts as initiators for controlled NCA polymerizations shows tremendous promise. Fast, reversible deactivation of a reactive species to obtain controlled polymerization is a proven concept in polymer chemistry, and this system can be compared to the persistent radical effect employed in all controlled radical polymerization strategies [37]. Like those systems, success of this method requires a carefully controlled matching of the... [Pg.11]

Improve adhesion of dissimilar materials such as polymers to inorganic substrates. Also called primers. Primers generally contain a multifunctional chemically reactive species capable of acting as a chemical bridge. In theory, any polar functional group in a compound may contribute to improved bonding to mineral surfaces. However, only a few organofunc-tional silanes have the balance of characteristics required... [Pg.773]

Chain gro tvth polymerization begins when a reactive species and a monomer react to form an active site. There are four principal mechanisms of chain growth polymerization free radical, anionic, cationic, and coordination polymerization. The names of the first three refer to the chemical nature of the active group at the growing end of the monomer. The last type, coordination polymerization, encompasses reactions in which polymers are manufactured in the presence of a catalyst. Coordination polymerization may occur via a free radical, anionic, or cationic reaction. The catalyst acts to increase the speed of the reaction and to provide improved control of the process. [Pg.41]

Step growth polymers, such as polyesters, are often manufactured via bulk polymerization. The reactive species are mixed together in a stirred reactor designed to promote intimate contact between the reactants. Variables such as temperature and pressure are used to control the molecular properties of the final polymer. [Pg.54]

Each differential equation contains a flow term identified by Q/V (flow rate/reactor volume) and also a reaction term which can be identified by a rate of reaction or equilibrium constant (k, K, k ). These reaction and equilibrium constants are functions of temperature which, in this study, was fixed. The viscosity dependence of the equilibrium constant (relating reactive species to total polymer) shown in Equations 6 and 7 was observed experimentally and is known as the Trommsdorf effect (6). Table I lists values and units of all parameters in Equations 1-7. [Pg.188]

Conservation equations are written for all reactive species initiators, monomer, polymer carbon radicals and DTC radicals. They are integrated forward in time using the forward Euler technique, and the results can be presented as functions of either time or conversion. The results for these simulations are given in the following section. [Pg.55]

For the synthesis of carbohydrate-substituted block copolymers, it might be expected that the addition of acid to the polymerization reactions would result in a rate increase. Indeed, the ROMP of saccharide-modified monomers, when conducted in the presence of para-toluene sulfonic acid under emulsion conditions, successfully yielded block copolymers [52]. A key to the success of these reactions was the isolation of the initiated species, which resulted in its separation from the dissociated phosphine. The initiated ruthenium complex was isolated by starting the polymerization in acidic organic solution, from which the reactive species precipitated. The solvent was removed, and the reactive species was washed with additional degassed solvent. The polymerization was completed under emulsion conditions (in water and DTAB), and additional blocks were generated by the sequential addition of the different monomers. This method of polymerization was successful for both the mannose/galactose polymer and for the mannose polymer with the intervening diol sequence (Fig. 16A,B). [Pg.232]

We next examine the possible fates of the alkoxy radical produced as a result of hydroperoxide fragmentation. It should be noted that the other fragment produced in this process, an hydroxy radical (not shown), would be an extremely reactive species. Since it is not attached to a polymer chain end, it is also capable of more readily diffusing through the polymer matrix than most of the radicals discussed to this point. This also makes the photo-oxidation of the glycol potentially more destructive. [Pg.633]

Mass spectrometer studies of oxidant additions to fluoro- and chlorocarbon gases have demonstrated that the relative reactivity of atoms with unsaturate species in a glow discharge follows the sequence F -- O > Cl > Br (41), Of course, the most reactive species present will preferentially undergo saturation reactions that reduce polymer formation and that may increase halogen atom concentration. Ultimately, determination of the relative reactivity of the plasma species allows prediction of the primary atomic etchants in a plasma of specific composition. [Pg.237]

The EE and phE mechanisms for neat polymers proposed by ourselves and others all involve the consequences of breaking bonds during fracture. Zakresvskii et al. (24) have attributed EE from the deformation of polymers to free radical formation, arising from bond scission. We (1) as well as Bondareva et al. (251 hypothesized that the EE produced by the electron bombardment of polymers is due to the formation of reactive species (e.g., free radicals) which recombine and eject a nearby trapped electron, via a non-radiative process. In addition, during the most intense part of the emissions (during fracture), there are likely shorter-lived excitations (e.g., excitons) which decay in a first order fashion with submicrosecond lifetimes. The detailed mechanisms of how bond scissions create these various states during fracture and the physics of subsequent reaction-induced electron ejection need additional insight. [Pg.152]

In the previous chapter, the synthesis of polymers by step polymerization was considered. Polymerization of unsaturated monomers hy chain polymerization will be discussed in this and several of the subsequent chapters. Chain polymerization is initiated hy a reactive species R produced from some compound I termed an initiator. [Pg.198]


See other pages where Polymers reactive species is mentioned: [Pg.34]    [Pg.277]    [Pg.731]    [Pg.825]    [Pg.495]    [Pg.2]    [Pg.857]    [Pg.50]    [Pg.189]    [Pg.190]    [Pg.195]    [Pg.196]    [Pg.142]    [Pg.360]    [Pg.182]    [Pg.453]    [Pg.203]    [Pg.207]    [Pg.58]    [Pg.286]    [Pg.37]    [Pg.37]    [Pg.53]    [Pg.43]    [Pg.18]    [Pg.32]    [Pg.55]    [Pg.204]    [Pg.204]    [Pg.207]    [Pg.202]    [Pg.124]   
See also in sourсe #XX -- [ Pg.22 ]




SEARCH



Reactive polymer

Reactive species

Reactive species reactivity

Reactivity polymer

© 2024 chempedia.info