Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Melting polymer

Luengo G ef a/1997 Thin film rheology and tribology of oonfined polymer melts oontrasts with bulk properties Macromolecules 30 2482-94... [Pg.1747]

Yethira] A and Woodward C E 1995 Monte Carlo density functional theory of nonuniform polymer melts J Chem. Phys. 102 5499... [Pg.2384]

Kremer K and Grest G S 1990 Dynamics of entangled linear polymer melts a molecular-dynamics simulation J Chem. Phys. 92 5057... [Pg.2384]

Figure C2.1.13. (a) Schematic representation of an entangled polymer melt, (b) Restriction of tire lateral motion of a particular chain by tire otlier chains. The entanglement points tliat restrict tire motion of a chain define a temporary tube along which tire chain reptates. Figure C2.1.13. (a) Schematic representation of an entangled polymer melt, (b) Restriction of tire lateral motion of a particular chain by tire otlier chains. The entanglement points tliat restrict tire motion of a chain define a temporary tube along which tire chain reptates.
C2.1.8.2 SHEAR THINNING AND NORMAL STRESS IN POLYMER MELTS... [Pg.2534]

Polymers owe much of their attractiveness to their ease of processing. In many important teclmiques, such as injection moulding, fibre spinning and film fonnation, polymers are processed in the melt, so that their flow behaviour is of paramount importance. Because of the viscoelastic properties of polymers, their flow behaviour is much more complex than that of Newtonian liquids for which the viscosity is the only essential parameter. In polymer melts, the recoverable shear compliance, which relates to the elastic forces, is used in addition to the viscosity in the description of flow [48]. [Pg.2534]

Flow behaviour of polymer melts is still difficult to predict in detail. Here, we only mention two aspects. The viscosity of a polymer melt decreases with increasing shear rate. This phenomenon is called shear thinning [48]. Another particularity of the flow of non-Newtonian liquids is the appearance of stress nonnal to the shear direction [48]. This type of stress is responsible for the expansion of a polymer melt at the exit of a tube that it was forced tlirough. Shear thinning and nonnal stress are both due to the change of the chain confonnation under large shear. On the one hand, the compressed coil cross section leads to a smaller viscosity. On the other hand, when the stress is released, as for example at the exit of a tube, the coils fold back to their isotropic confonnation and, thus, give rise to the lateral expansion of the melt. [Pg.2534]

Graessley W W 1993 Viscoelasticity and flow in polymer melts and concentrated solutions Physical Properties of Polymers ed J E Mark et al (Washington, DC ACS) pp 97- 143... [Pg.2540]

Stevenson, J.F., 1972. Elongational flow of polymer melts. AIChE. J. 18, 540-547. [Pg.16]

Wagner, M.H., 1979. Towards a network theory for polymer melts. Rheol. Acta. 18, 33 - 50. [Pg.16]

We consider a co-extrusion die consisting of an outer circular distribution channel of rectangular cross-section, connected to an extrusion slot, which is a slowly tapering narrow passage between two flat, non-parallel plates. The polymer melt is fed through an inlet into the distribution channel and flows into... [Pg.173]

Before we are in a position to discuss the viscosity of polymer melts, we must first give a quantitative definition of what is meant by viscosity and then say something about how this property is measured. This will not be our only exposure to experimental viscosity in this volume—other methods for determining bulk viscosity will be taken up in the next chapter and the viscosity of solutions will be discussed in Chap. 9—so the discussion of viscometry will only be introductory. Throughout we shall be concerned with constant temperature experiments conducted under nonturbulent flow conditions. [Pg.75]

At and near T j -which is a low temperature for the liquid state of a polymer, whatever its absolute value may be-the viscosity of a polymer melt will be quite high, which is a direct consequence of the encumbered movement of the polymer chains past one another. [Pg.205]

Physically or chemically modifying the surface of PET fiber is another route to diversified products. Hydrophilicity, moisture absorption, moisture transport, soil release, color depth, tactile aesthetics, and comfort all can be affected by surface modification. Examples iaclude coatiag the surface with multiple hydroxyl groups (40), creatiag surface pores and cavities by adding a gas or gas-forming additive to the polymer melt (41), roughening the surface... [Pg.325]

Chemical Properties. The hydrolysis of PET is acid- or base-catalyzed and is highly temperature dependent and relatively rapid at polymer melt temperatures. Treatment for several weeks in 70°C water results in no significant fiber strength loss. However, at 100°C, approximately 20% of the PET tenacity is lost in one week and about 60% is lost in three weeks (47). In general, the hydrolysis and chemical resistance of copolyester materials is less than that for PET and depends on both the type and amount of comonomer. [Pg.326]

Phosphoms-containing additives can act in some cases by catalyzing thermal breakdown of the polymer melt, reducing viscosity and favoring the flow or drip of molten polymer from the combustion zone (25). On the other hand, red phosphoms [7723-14-0] has been shown to retard the nonoxidative pyrolysis of polyethylene (a radical scission). For that reason, the scavenging of radicals in the condensed phase has been proposed as one of several modes of action of red phosphoms (26). [Pg.475]

The shear stresses are proportional to the viscosity, in accordance with experience and intuition. However, the normal stresses also have viscosity-dependent components, not an intuitively obvious result. For flow problems in which the viscosity is vanishingly small, the normal stress component is negligible, but for fluid of high viscosity, eg, polymer melts, it can be significant and even dominant. [Pg.89]

Pseudoplastic fluids are the most commonly encountered non-Newtonian fluids. Examples are polymeric solutions, some polymer melts, and suspensions of paper pulps. In simple shear flow, the constitutive relation for such fluids is... [Pg.96]

Many industrially important fluids cannot be described in simple terms. Viscoelastic fluids are prominent offenders. These fluids exhibit memory, flowing when subjected to a stress, but recovering part of their deformation when the stress is removed. Polymer melts and flour dough are typical examples. Both the shear stresses and the normal stresses depend on the history of the fluid. Even the simplest constitutive equations are complex, as exemplified by the Oldroyd expression for shear stress at low shear rates ... [Pg.96]

First,/)-hydroxybenzoic acid (HBA) and 6-hydroxy-2-naphthoic acid (HNA) are acetylated to produce the low melting acetate esters which are molten at 200°C. In an inert gas, the two monomers are melted together at 200°C. The temperature is raised to 250—280°C and acetic acid is coUected for 0.5 to 3 h. The temperature is raised to 280—340°C and additional acetic acid is removed in vacuum for a period of 10 to 60 min. The opalescent polymer melt produced is extmded through a spinning jet, foUowed by melt drawdown. The use of the paraUel offset monomer, acetylated HNA, results in the formation of a series of random copolyesters of different compositions, many of which faU within the commercially acceptable melting range of... [Pg.67]


See other pages where Melting polymer is mentioned: [Pg.70]    [Pg.731]    [Pg.740]    [Pg.741]    [Pg.1535]    [Pg.2364]    [Pg.2522]    [Pg.418]    [Pg.440]    [Pg.109]    [Pg.76]    [Pg.91]    [Pg.92]    [Pg.123]    [Pg.218]    [Pg.240]    [Pg.788]    [Pg.195]    [Pg.306]    [Pg.316]    [Pg.332]    [Pg.96]    [Pg.350]    [Pg.394]    [Pg.69]    [Pg.148]    [Pg.148]    [Pg.490]    [Pg.201]    [Pg.201]   
See also in sourсe #XX -- [ Pg.601 ]




SEARCH



Melted polymer

Polymer melts

© 2024 chempedia.info