Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers heat stabilizers

Table 8,2 Polymer heat stabilizers selection guide... Table 8,2 Polymer heat stabilizers selection guide...
The diffusion coefficient depends on the temperature of the system and on the concentration of volatiles. An increase in the temperature results in an increase in diffusivity and a decrease in viscosity, both beneficial for devolatilization. However, many polymers are thermally sensitive, so there may be a practical upper limit on the temperature to which the polymer may be exposed, as higher temperatures may degrade the polymer. Heat stabilizers have been used to enhance the thermal stabilization [35]. [Pg.975]

Heat-resistant fib( Heat-resistant polymers Heat-set inks Heatshield Heat shields Heat stability Heat stabilizers... [Pg.466]

Heat stabilizers protect polymers from the chemical degrading effects of heat or uv irradiation. These additives include a wide variety of chemical substances, ranging from purely organic chemicals to metallic soaps to complex organometaUic compounds. By far the most common polymer requiring the use of heat stabilizers is poly(vinyl chloride) (PVC). However, copolymers of PVC, chlorinated poly(vinyl chloride) (CPVC), poly(vinyhdene chloride) (PVDC), and chlorinated polyethylene (CPE), also benefit from this technology. Without the use of heat stabilizers, PVC could not be the widely used polymer that it is, with worldwide production of nearly 16 million metric tons in 1991 alone (see Vinyl polymers). [Pg.544]

The discussion centers on heat stabilizers for PVC because this polymer is the most important class of halogenated polymers requiring these chemical additives. PVC of ideal chemical stmcture (1) should be a relatively stable compound as predicted from model studies using 2,4,6-trichloroheptane [13049-21-3] (2) (1). [Pg.544]

During the polymeriza tion process the normal head-to-tad free-radical reaction of vinyl chloride deviates from the normal path and results in sites of lower chemical stabiUty or defect sites along some of the polymer chains. These defect sites are small in number and are formed by autoxidation, chain termination, or chain-branching reactions. Heat stabilizer technology has grown from efforts to either chemically prevent or repair these defect sites. Partial stmctures (3—6) are typical of the defect sites found in PVC homopolymers (2—5). [Pg.544]

Rigid Applications. The use of the lead stabilizers is very limited in the United States but, they are stiU used in several rigid PVC appHcations in Europe and Asia. The highest use of lead stabilizers in rigid PVC is for pipe and conduit appHcations. Tribasic lead sulfate is the primary heat stabilizer with lead stearates included to provide lubrication. The lead products are typically fully formulated, usually including lubricants and pigments for pipe extmsion appHcations. These lead one-packs, when used at about 1.8—2.5 phr, provide all of the stabilizer and lubrication needed to process the polymer. A lead one-pack contains tribasic lead sulfate, dibasic lead stearate calcium stearate, polyethylene wax, paraffin wax, ester wax, and pigments. [Pg.552]

Polymers. In combination with various metal salts, sorbitol is used as a stabilizer against heat and light in poly(vinyl chloride) (qv) resins and, with a phenohc antioxidant, as a stabilizer in uncured styrene—butadiene mbber (qv) compositions and in polyolefins (see Heat stabilizers Olefin POLYMERS Rubbercompounding). Heat-sealable films are prepared from a dispersion of sorbitol and starch in water (255). Incorporation of sorbitol in coUagen films gready restricts their permeabiUty to carbon dioxide (256). [Pg.55]

Vinylidene Chloride Copolymer Foams. Low density, fine-celled VDC copolymer foams can be made by extmsion of a mixture of vinylidene chloride copolymer and a blowing agent at 120—150°C (190). The formulation must contain heat stabilizers, and the extmsion equipment must be made of noncatalytic metals to prevent accelerated decomposition of the polymer. The low melt viscosity of the VDC copolymer formulation limits the size of the foam sheet that can be extmded. [Pg.443]

In the massive form poly(vinyl chloride) is a colourless rigid material with limited heat stability and with a tendency to adhere to metallic surfaces when heated. For these, and other, reasons it is necessary to compound the polymer with other ingredients to make useful plastics materials. By such means it is possible to produce a wide range of products, including rigid piping and soft elastic cellular materials. [Pg.325]

Since acetal resins are degraded by ultra violet light, additives may be included to improve the resistance of the polymer. Carbon black is effective but as in the case of polyethylene it must be well dispersed in the polymer. The finer the particle size the better the ultra violet stability of the polymer but the poorer the heat stability. About 1.5% is generally recommended. For white compounds and those with pastel colours titanium dioxide is as good in polyacetals as most transparent ultraviolet absorbers, such as the benzophenone derivatives and other materials discussed in Chapter 7. Such ultraviolet absorbers may be used for compounds that are neither black, white nor pastel shade in colour. [Pg.543]

Polymers with exceptional heat stability which require special fabrication techniques such as the polyphenylenes. These materials form part of a group of exceptionally heat-stable materials which will be considered further in Chapter 29. [Pg.612]

The stabilised nitrate may then be bleached with sodium hypochlorite, centrifuged to remove much of the water in which the polymer has been slurried and dehydrated by displacement with alcohol while under pressure in a press. It is interesting to note that in these processes approximately 35 000 gallons (160000 litres) of water are used for every ton of cellulose nitrate produced. Control of purity of the water is important in particular the iron content should be as low as 0.03 parts per million since iron can adversely affect both the colour and heat stability of the polymer. [Pg.617]

Irg 1076, AO-3 (CB), are used in combination with metal dithiolates, e.g., NiDEC, AO-30 (PD), due to the sensitized photoxidation of dithiolates by the oxidation products of phenols, particularly stilbenequinones (SQ, see reaction 9C) (Table 3). Hindered piperidines exhibit a complex behavior when present in combination with other antioxidants and stabilizers they have to be oxidized initially to the corresponding nitroxyl radical before becoming effective. Consequently, both CB-D and PD antioxidants, which remove alkyl peroxyl radicals and hydroperoxides, respectively, antagonise the UV stabilizing action of this class of compounds (e.g.. Table 3, NiDEC 4- Tin 770). However, since the hindered piperidines themselves are neither melt- nor heat-stabilizers for polymers, they have to be used with conventional antioxidants and stabilizers. [Pg.117]

The most commonly used stabilizers are barium, cadmium, zinc, calcium and cobalt salts of stearic acid phosphorous acid esters epoxy compounds and phenol derivatives. Using stabilizers can improve the heat and UV light resistance of the polymer blends, but these are only two aspects. The processing temperature, time, and the blending equipment also have effects on the stability of the products. The same raw materials and compositions with different blending methods resulted in products with different heat stabilities. Therefore, a thorough search for the optimal processing conditions must be done in conjunction with a search for the best composition to get the best results. [Pg.140]

Many additives are used with PVC polymers such as plasticizers, antioxidants, and impact modifiers. Heat stabilizers, which are particularly important with PVC resins, extend the useful life of the finished product. Plastic additives have been reviewed by Ainsworth. [Pg.334]

Silicone polymers having high heat stability and excellent chemical resistance are available. They are very expensive and hence are not commonly found in paint coatings. [Pg.585]


See other pages where Polymers heat stabilizers is mentioned: [Pg.545]    [Pg.545]    [Pg.3650]    [Pg.545]    [Pg.545]    [Pg.3650]    [Pg.284]    [Pg.314]    [Pg.420]    [Pg.545]    [Pg.545]    [Pg.545]    [Pg.551]    [Pg.292]    [Pg.72]    [Pg.72]    [Pg.385]    [Pg.535]    [Pg.506]    [Pg.1]    [Pg.77]    [Pg.440]    [Pg.96]    [Pg.98]    [Pg.329]    [Pg.331]    [Pg.343]    [Pg.576]    [Pg.586]    [Pg.483]    [Pg.629]    [Pg.164]    [Pg.408]    [Pg.585]    [Pg.27]    [Pg.47]   
See also in sourсe #XX -- [ Pg.348 ]




SEARCH



Heat stabilization

Heat stabilizers

Polymer stabilization

Polymer stabilization stabilizers

Stabilizer polymer

Stabilizing polymers

© 2024 chempedia.info