Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerisation, alternating

Continuous Polymerization. A typical continuous flow diagram for the vinyl acetate polymerisation is shown in Figure 12. The vinyl acetate is fed to the first reactor vessel, in which the mixture is purged with an inert gas such as nitrogen. Alternatively, the feed may be purged before being introduced to the reactor (209). A methanol solution containing the free-radical initiator is combined with the above stream and passed directiy and continuously into the first reactor from which a stream of the polymerisation mixture is continuously withdrawn and passed to subsequent reactors. More initiator can be added to these reactors to further increase the conversion. [Pg.483]

Polymer Gasoline. Refinery trends tend to favor alkylation over polymerisation. Unlike the alkylation process, polymerisation does not require isobutane. The catalyst is usually phosphoric acid impregnated on kieselghur pellets. Polymerisation of butylenes is not an attractive alternative to alkylation unless isobutane is unavailable. The motor octane number of polymer gasoline is also low, and there is considerable shrinkage ia product volume. The only commercial unit to be built ia recent years is at Sasol ia South Africa. The commercial process was developed by UOP ia the 1940s (104). [Pg.371]

An alternative technique is that of condensation polymerisation. A simple example of this is seen in the manufacture of linear polyesters. Here a dibasic acid is reacted with a dihydroxy compound, e.g. a glycol (Figure 2.5). [Pg.20]

An alternative route to cross-linking is to start with a linear polymer and then cross-link the molecules by tying the molecule through some reactive group. For example, it is possible to cross-link unsaturated polyesters by an addition polymerisation across the double bond as shown schematically in Figure 2.12. [Pg.24]

An alternative approach to solving the exotherm problem is to polymerise in suspension. In this case the monomer is vigorously stirred in water to form tiny droplets. To prevent these droplets from cohering at the stage when the droplet is a sticky mixture of polymer and monomer, suspension or dispersion agents... [Pg.27]

Polymerisation could proceed from the radical in the normal way or alternatively chain transfer may occur by a second back-biting stage either to the butyl group (Figure 10.2(a)) or to the main chain (Figure 10.2(h)). [Pg.213]

The close structural similarities between polychloroprene and the natural rubber molecule will be noted. However, whilst the methyl group activates the double bond in the polyisoprene molecule the chlorine atom has the opposite effect in polychloroprene. Thus the polymer is less liable to oxygen and ozone attack. At the same time the a-methylene groups are also deactivated so that accelerated sulphur vulcanisation is not a feasible proposition and alternative curing systems, often involving the pendant vinyl groups arising from 1,2-polymerisation modes, are necessary. [Pg.295]

The preparation of a prepolymer requires careful control and can be somewhat difficult in large-scale operations. An alternative approach is to prepare a syrup by dissolving some polymer in the monomer and adding some peroxide to the mixture. As in the case of a prepolymer syrup, such a syrup will cause less shrinkage on polymerisation and fewer leakage problems. [Pg.403]

The silicones have established their value as water-repellent finishes for a range of natural and synthetic textiles. A number of techniques have been devised which result in the pick-up of 1-3% of silicone resin on the cloth. The polymer may be added as a solution, an emulsion or by spraying a fine mist alternatively, intermediates may be added which either polymerise in situ or attach themselves to the fibre molecules. [Pg.826]

The epoxy-acrylic resin referred to above is a graft copolymer prepared by the polymerisation of acrylic monomers in the presence of the epoxy resin in such a way that grafting of the acrylic onto the epoxy takes place. Water dispersibility is achieved by neutralising carboxyl groups in the acrylic polymer chain with ammonia or amine. Amino or phenolic resins are used as crosslinkers. Alternatively, solvent-borne epoxy-amino or epoxy-phenolic lacquers can be used. [Pg.633]

Chain reactions do not continue indefinitely, but in the nature of the reactivity of the free radical or ionic centre they are likely to react readily in ways that will destroy the reactivity. For example, in radical polymerisations two growing molecules may combine to extinguish both radical centres with formation of a chemical bond. Alternatively they may react in a disproportionation reaction to generate end groups in two molecules, one of which is unsaturated. Lastly, active centres may find other molecules to react with, such as solvent or impurity, and in this way the active centre is destroyed and the polymer molecule ceases to grow. [Pg.24]

Step polymerisations tend to be carried out using two different bifunctional molecules so that these give rise to molecules which are essentially copolymers. For example, nylon 6,6 is prepared from hexamethylenediamine and adipic acid it thus consists of alternating residues along the polymer chain and may be thought of as an alternating copolymer. [Pg.37]

Controlling the exact architectnre of polymers has always attracted attention in macromolecular chemistry. Snccessfnl synthesis of alternating copolymers nsing ring opening metathesis polymerisation is of great interest also from a mechanistic perspective. NHC ligands were fonnd to be ideal to tune the selectivity of the metathesis initiators. [Pg.88]

Synthesis of strictly alternating copolymers can be achieved via various polymerisation techniques including poly-condensation or Ziegler-Natta polymerisations [123, 124]. [Pg.88]

Fig. 3.31 Steric control in alternating ROMP Tendencies of norbomene and cyclooctene to give productive olefin metathesis upon coordination are illustrated by a thick arrow (preferred monomer) or a thin arrow (less favoured monomer) (a) only minor steric hindrance SlMes greatly favours the polymerisation of the strained norbomene (b) the rotating phenylethyl-group induces a steiically more congested active site, leading to preferred incorporation of the smaller cyclooctene (c) the flexible and small cyclooctene derived polymer fragment permits the incorporation of the bulky norbomene... Fig. 3.31 Steric control in alternating ROMP Tendencies of norbomene and cyclooctene to give productive olefin metathesis upon coordination are illustrated by a thick arrow (preferred monomer) or a thin arrow (less favoured monomer) (a) only minor steric hindrance SlMes greatly favours the polymerisation of the strained norbomene (b) the rotating phenylethyl-group induces a steiically more congested active site, leading to preferred incorporation of the smaller cyclooctene (c) the flexible and small cyclooctene derived polymer fragment permits the incorporation of the bulky norbomene...
Assuming that the polymerisation does occur via a radical intermediate, then coupling is possible at all three positions on the ring (albeit with differing probabilities) and a number of alternative products to the emeraldine-based structure can be... [Pg.24]

Fig. 20. A possible polymerisation mechanism for five-membered heterocyles showing the two alternative reaction pathways of radical-radical coupling and radical-monomer coupling. Fig. 20. A possible polymerisation mechanism for five-membered heterocyles showing the two alternative reaction pathways of radical-radical coupling and radical-monomer coupling.
The suggested fragments from (54a) are a carbonyl compound (58) and a peroxy zwitterion (59), the latter then effecting a 1,3-dipolar addition on the former to yield the ozonide (57a). Alternative reactions of the zwitterion (59), including its polymerisation, lead to the formation of the abnormal products that are sometimes observed in addition to the ozonide, If ozonolysis is carried out in MeOH as solvent then (59) is trapped , as it is formed, by its conversion into the relatively stable a-hydroperoxy ether (60) ... [Pg.193]

Attempted formation of sodium tetrafluoropropoxide by adding the alcohol to sodium (40 g) caused ignition and a fierce fire which melted the flask. This was attributed to alkoxide-induced elimination of hydrogen fluoride, and subsequent exothermic polymerisation. In an alternative preparation of the potassium alkoxide by adding the alcohol to solid potassium hydroxide, a vigorous exotherm occurred. This was not seen when the base was added slowly to the alcohol. [Pg.410]


See other pages where Polymerisation, alternating is mentioned: [Pg.40]    [Pg.350]    [Pg.110]    [Pg.110]    [Pg.111]    [Pg.40]    [Pg.350]    [Pg.110]    [Pg.110]    [Pg.111]    [Pg.189]    [Pg.176]    [Pg.522]    [Pg.483]    [Pg.273]    [Pg.419]    [Pg.308]    [Pg.418]    [Pg.198]    [Pg.90]    [Pg.10]    [Pg.130]    [Pg.263]    [Pg.82]    [Pg.83]    [Pg.88]    [Pg.211]    [Pg.212]    [Pg.76]    [Pg.16]    [Pg.282]    [Pg.317]    [Pg.415]    [Pg.519]    [Pg.69]   
See also in sourсe #XX -- [ Pg.276 ]




SEARCH



© 2024 chempedia.info