Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylic polymers chain

The epoxy-acrylic resin referred to above is a graft copolymer prepared by the polymerisation of acrylic monomers in the presence of the epoxy resin in such a way that grafting of the acrylic onto the epoxy takes place. Water dispersibility is achieved by neutralising carboxyl groups in the acrylic polymer chain with ammonia or amine. Amino or phenolic resins are used as crosslinkers. Alternatively, solvent-borne epoxy-amino or epoxy-phenolic lacquers can be used. [Pg.633]

Figure 15. Top view of a hypothetical acrylic polymer chain illustrating the effect of polymer side chain length. Figure 15. Top view of a hypothetical acrylic polymer chain illustrating the effect of polymer side chain length.
Another side reaction is the enolization of acrylate polymer chains [Eq. (47)]. [Pg.345]

One way of influencing the way in which the added oligomer is distributed in the final cured produce is to provide reactive sites on the oligomer so that it can be incorporated into the acrylic matrix as it forms. For instance, if the added oligomer contains terminal, active, acrylic, or methacrylic unsaturation, it can be easily incorporated into the growing acrylic polymer chains as the adhesive cures. Then it is unable to precipitate as a separate phase and must remain more or less uniformly distributed throughout the matrix. On the other hand, incompatible... [Pg.732]

The Ts of methacryhc polymers may be regulated by the copolymerization of two or more monomers as illustrated in Figure 1. The approximate T value for the copolymer can be calculated from the weight fraction of each monomer type and the T (in K) of each homopolymer (15). Acrylates with low transition temperatures are frequently used as permanent plasticizers (qv) for methacrylates. Unlike plasticizer additives, once polymerized into the polymer chain, the acrylate cannot migrate, volatilize, or be extracted from the polymer. [Pg.260]

Two kinds of monomers are present in acryUc elastomers backbone monomers and cure-site monomers. Backbone monomers are acryUc esters that constitute the majority of the polymer chain (up to 99%), and determine the physical and chemical properties of the polymer and the performance of the vulcanizates. Cure-site monomers simultaneously present a double bond available for polymerization with acrylates and a moiety reactive with specific compounds in order to faciUtate the vulcanization process. [Pg.474]

Acrylate polymers also have fully saturated polymer backbones free of any heteroatoms in the main chain. This makes the polymers highly resistant to oxidation, photo-degradation and chemical attack. The acrylate groups are esters, which could be hydrolyzed under severe conditions. However, the hydrophobic nature of most acrylic polymers minimizes the risk for hydrolysis and, even if this reaction happened to some extent, the polymer backbone would still be intact. Other desirable acrylate properties include the following ... [Pg.486]

As the amount of acrylic acid in the polymer increases, the degree of hydrogen bonding between polymer chains also increases causing the cohesive strength to improve without the need for crosslinking. Very similar observations can be made for other polar monomers, such as acrylamide. [Pg.490]

Thomas et al. [64] prepared copolymers of 1-pyreneacrylic acid with acrylic acid (AA), 17, and with methacrylic acid (MA), 18, incorporating not more than one pyrene unit per polymer chain. The mole ratios of pyrene to AA and MA units were 1150 and 1390, respectively. The molecular weights of 17 and 18 were 8.3 x lO4... [Pg.73]

Copolymerization of macromonomers formed by backbiting and fragmentation is a second mechanism for long chain branch formation during acrylate polymerization (Section 4.4.3.3). The extents of long and short chain branching in acrylate polymers in emulsion polymerization as a function of conditions have been quantified.20 ... [Pg.322]

Thiol-ene polymerization was first reported in 1938.220 In this process, a polymer chain is built up by a sequence of thiyl radical addition and chain transfer steps (Scheme 7.17). The thiol-ene process is unique amongst radical polymerizations in that, while it is a radical chain process, the rate of molecular weight increase is more typical of a step-growth polymerization. Polymers ideally consist of alternating residues derived from the diene and the dithiol. However, when dienes with high kp and relatively low A-, monomers (e.g. acrylates) are used, short sequences of units derived from the diene are sometimes formed. [Pg.378]

AMP forms a gel with long-chain acrylic polymers. [Pg.46]

The development of monoalkyl phosphate as a low skin irritating anionic surfactant is accented in a review with 30 references on monoalkyl phosphate salts, including surface-active properties, cutaneous effects, and applications to paste and liquid-type skin cleansers, and also phosphorylation reactions from the viewpoint of industrial production [26]. Amine salts of acrylate ester polymers, which are physiologically acceptable and useful as surfactants, are prepared by transesterification of alkyl acrylate polymers with 4-morpholinethanol or the alkanolamines and fatty alcohols or alkoxylated alkylphenols, and neutralizing with carboxylic or phosphoric acid. The polymer salt was used as an emulsifying agent for oils and waxes [70]. Preparation of pharmaceutical liposomes with surfactants derived from phosphoric acid is described in [279]. Lipid bilayer vesicles comprise an anionic or zwitterionic surfactant which when dispersed in H20 at a temperature above the phase transition temperature is in a micellar phase and a second lipid which is a single-chain fatty acid, fatty acid ester, or fatty alcohol which is in an emulsion phase, and cholesterol or a derivative. [Pg.611]

Cobalt porphyrin complexes are involved in the chain transfer catalysis of the free-radical polymerization of acrylates. Chain transfer catalysis occurs by abstraction of a hydrogen atom from a grow ing polymer radical, in this case by Co(Por) to form Co(Por)H. The hydrogen atom is then transferred to a new monomer, which then initiates a new propagating polymer chain. The reaction steps are shown in Eqs. 12 (where R is the polymer chain. X is CN), (13), and (14)." ... [Pg.290]

A novel polymerized vesicular system for controlled release, which contains a cyclic a-alkoxyacrylate as the polymerizable group on the amphiphilic structure, has been developed. These lipids can be easily polymerized through a free radical process. It has been shown that polymerization improves the stabilities of the synthetic vesicles. In the aqueous system the cyclic acrylate group, which connects the polymerized chain and the amphiphilic structure, can be slowly hydrolyzed to separate the polymer chain and the vesicular system and generate a water-soluble biodegradable polymer. Furthermore, in order to retain the fluidity and to prepare the polymerized vesicles directly from prev lymerized lipids, a hydrophilic spacer has been introduced. [Pg.283]


See other pages where Acrylic polymers chain is mentioned: [Pg.501]    [Pg.616]    [Pg.95]    [Pg.158]    [Pg.501]    [Pg.56]    [Pg.47]    [Pg.47]    [Pg.15]    [Pg.501]    [Pg.616]    [Pg.95]    [Pg.158]    [Pg.501]    [Pg.56]    [Pg.47]    [Pg.47]    [Pg.15]    [Pg.182]    [Pg.192]    [Pg.46]    [Pg.434]    [Pg.463]    [Pg.488]    [Pg.496]    [Pg.496]    [Pg.566]    [Pg.1013]    [Pg.164]    [Pg.348]    [Pg.150]    [Pg.257]    [Pg.464]    [Pg.259]    [Pg.584]    [Pg.71]    [Pg.266]    [Pg.174]    [Pg.14]    [Pg.291]    [Pg.73]    [Pg.114]   
See also in sourсe #XX -- [ Pg.249 ]




SEARCH



Acryl Polymers

Acrylic polymers

Chain-reaction polymer acrylics

Polymers acrylic polymer

© 2024 chempedia.info