Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymeric Steric Stabilization

The polymeric repulsion force is relatively hard that is, it increases quite rapidly with decreasing interparticle distance. It is also a short-range force, as it drops to zero where the polymer layers do not overlap. If these layers do not deform much, the rheological behavior resembles that of Brownian hard spheres. The results for hard spheres can be used as a first approximation, substituting for the volume fraction an effective volume fraction that includes the stabilizer layer 8  [Pg.464]

Effect of particle size (i.e., softness) on the low shear rate viscosity of suspensions containing sterically stabilized particles. Polymethyl methacrylate latex in decalin, stabilizer layer thickness, 9 nm particle diameters , 475 nm o, 376 nm , 129 nm and A, 84 nm. From D Haene (1991). [Pg.464]


Polymeric steric stabilizer such as poly(vinylpyrrolidone) (PVPo),poly(acrylic acid), poly(hydroxypropyl)cellulose, etc., are used to prepare monodisperse polymer in dispersion polymerization of monomers such as alkyl acrylates and methacrylates, and styrene in polar media. AB and ABA block copolymers are a second type of steric stabilizer which can be used in dispersion polymerization. For example, the poly(styrene-h-ethylene oxide) was recently used by Winnik et al. [6] in the dispersion polymerization of styrene in methanol. [Pg.9]

During dispersion polymerization polymer particles are formed from an initially homogeneous reaction mixture by polymerization in the presence of a polymeric steric stabilizer. The process is applicable to monomers which yield polymers that are insoluble in a solvent for the monomer. Styrene has been polymerized in alcohols, with steric stabilizers such as poly(A -vinylpyrrolidone) (see Fig. 1-4 for monomer structure) or hydroxypropyl cellulose. Hydrocarbon... [Pg.278]

The major route to colloidal (effectively water soluble) PAn has been through the chemical oxidation (S2082-) of the monomer in the presence of polymeric steric stabilizers and electrosteric stabilizers (polyelectrolytes), such as poly(vinyl alcohol), polyGV-vinyl pyrrolidone), polyethylene oxide), polystyrene sulfonate), dodecylben-zene sulfonate, and dextran sulfonate. It has been found that the stabilizer can act simultaneously as a dopant, imparting new functionality to the polymer or additional compatibility for the final application. [Pg.151]

In Sects. 1.2.1 and 1.2.2 we shall first qualitatively consider double layer and Van der Waals interactions, the two contributions to the DLVO potential (Sect. 1.2.3), and then discuss (polymeric) steric stabilization by end-attached polymer in Sect. 1.2.4. While not further discussed here we mention that adsorbing polymers, proteins or particles can also be used to protect colloids against flocculation. For protein adsorption, often used for instance in food emulsions, we refer to [28]. Using particles to stabilize colloids is referred to as Ramsden-Pickering stabilization [29]. Finally, the depletion interaction will be treated in Sect. 1.2.5. [Pg.4]

In the above descriptions we concentrated on situations where a polar background solvent was implicitly assumed. In apolar solvents double layer repulsion is diflhcult to achieve because dissociation, leading to charged surface groups, is less likely to occur and it becomes essential to stabilize colloids with polymers as to prevent instabilities. In the first decades after the establishment of the DLVO theory most papers on forces between colloidal particles focused on Van der Waals and double layer interactions. Forces of other origin such as polymeric steric stabilization [17], depletion [40] or effects of a critical solvent mixture [41] gained interest at a later stage. [Pg.9]

Monosized polystyrene particles in the size range of 2-10 /am have been obtained by dispersion polymerization of styrene in polar solvents such as ethyl alcohol or mixtures of alcohol with water in the presence of a suitable steric stabilizer (59-62). Dispersion polymerization may be looked upon as a special type of precipitation polymerization and was originally meant to be an alternative to emulsion polymerization. The components of a dispersion polymerization include monomers, initiator, steric stabilizer, and the dispersion medium... [Pg.15]

Monomer-soluble initiators are used in this polymerization technique. The monomer phase containing an initiator is dissolved in an inert solvent or solvent mixture including a steric stabilizer. The polymers or oligomer... [Pg.201]

Figure 9 The schematical representation of dispersion polymerization process, (a) initially homogeneous dispersion medium (b) particle formation and stabilizer adsorption onto the nucleated macroradicals (c) capturing of radicals generated in the continuous medium by the forming particles and monomer diffusion to the forming particles (d) polymerization within the monomer swollen latex particles, (e) latex particle stabilized by steric stabilizer and graft copolymer molecules (f) list of symbols. Figure 9 The schematical representation of dispersion polymerization process, (a) initially homogeneous dispersion medium (b) particle formation and stabilizer adsorption onto the nucleated macroradicals (c) capturing of radicals generated in the continuous medium by the forming particles and monomer diffusion to the forming particles (d) polymerization within the monomer swollen latex particles, (e) latex particle stabilized by steric stabilizer and graft copolymer molecules (f) list of symbols.
Some typical dispersion polymerization recipes and the electron micrograph of the uniform polymeric particles with Recipe I are given in Table 5 and Fig. 10, respectively. As seen in Table 5, the alcohols or alcohol-water mixtures are usually utilized as the dispersion media for the dispersion polymerization of apolar monomers. In order to achieve the monodispersity in the final product, a costabilizer can be used together with a primary steric stabilizer, which is usually in the polymeric form as in... [Pg.202]

Two major types of stabilization mechanisms are described for submicron particles (1) charge stabilization, where surface charge forms a repulsive screen that prevents the particles from flocculation, and (2) steric stabilization, where a surface repulsive screen is formed by solvent-compatible flexible polymeric chains attached to the particle s surface. [Pg.442]

Steric stabilization is brought about by large organic molecules such as poly(A-vinyl-2-p5Trolidone) (PVP) that are firmly adsorbed on the surface of the nanoparticle [47,57]. Polymeric stabilizers establish many weak bonds with the nanoparticle s surface rather than forming less strong bonds at specific sites of the particles. This mode of stabilization has been shown to be very versatile (see Section 3.6). [Pg.22]

To keep the precipitating polymers in the dispersed state throughout the polymerization, requires steric stabilizers. This problem is classically tackled via copolymerization with fluoroalkylmethacrylates or the addition of fluorinated surfactants, both being only weak steric stabilizers. DeSimone el al. also applied a fluorinated block copolymer,9 proving the superb stabilization efficiency of such systems via a rather small particle size. One goal of the present chapter is therefore an investigation of our fluorinated block copolymers as steric stabilizers in low-cohesion-energy solvents. [Pg.158]

Instead of performing the polymerization reactions in supercritical C02 (we do not yet have access to this technology), we chose the dispersion polymerization in 1,1,2-trichlorotrifluoroethane (Freon 113), to serve as a model for supercritical C02. We only used the short diblock copolymers for the polymerization of styrene in Freon 113, since it is known that such diblock copolymers are the most efficient steric stabilizers. [Pg.158]

These block copolymers can act as effective steric stabilizers for the dispersion polymerization in solvents with ultralow cohesion energy density. This was shown with some polymerization experiments in Freon 113 as a model solvent. The dispersion particles are effectively stabilized by our amphi-philes. However, these experiments can only model the technically relevant case of polymerization or precipitation processes in supercritical C02 and further experiments related to stabilization behavior in this sytem are certainly required. [Pg.164]

Th-oxyhydroxide species readily dissolve upon dilution below the solubility limit, it is not veiy likely that such actinide(IV) colloids play a role away from the source in the far field of a repository. In the near field of a repository, however, they may be predominant species controlling the solubility of tetravalent actinide species such as U(IV) and Pu(IV) and thus the source term. Unusual stability at high ionic strength has been also reported for amorphous SiOz colloids (Iler 1979 Healy 1994) which also cannot be explained solely by electrostatic repulsion. Formation of oligomeric or polymeric silicate species at the colloid-water interface are thought to exert additional steric stabilization by preventing close approach of those particles. [Pg.535]

The dispersion polymerization system is composed of monomer, solvent, initiator, and stabilizer. The combination of monomer, solvent, and stabilizer is essential for particle preparation. That is to say, the stabilizer is chosen to meet the demand of the monomer and solvent. In any system, the stabilizer has affinity or cohesive strength for both the medium and the polymer particles. In a dispersion polymerization, the medium and polymer particles both are organic compounds. Therefore, it is not rational to rely on dispersion stabilization, which comes from the electrostatic repulsion force between particles. The stabilizer for dispersion polymerization that makes interfacial energy low must have affinity for particles due to the same quality and solvation at the surface of particles. It is desired that the stabilizer be a polymer that indicates a steric stabilization effect on the surface (5). [Pg.612]

For (c), a macromonomer that has a pendant group accustomed to the solvent is used as a comonomer in the dispersion polymerization of a monomer that composes the particle. The surface of resulting particles is covered with the pendant group and consequently stabilized by a steric stabilization effect (14,15). In this sense the macromonomer is a kind of stabilizer that shows its effect through polymerization, and it could be called as a stabilizer formed in situ. A copolymer of macromonomer and particle-composing monomer, which joins the polymer particle, is much more effective for dispersion than a soluble stabilizer. With the dispersion polymerization of methyl methacrylate, which uses a macromonomer composed of an oligo-oxazoline pendant group, it is possible to cut the amount of stabilizer used to one-tenth or less compared to the oxazoline homopolymer stabilizer (16). [Pg.613]


See other pages where Polymeric Steric Stabilization is mentioned: [Pg.143]    [Pg.157]    [Pg.157]    [Pg.235]    [Pg.235]    [Pg.3741]    [Pg.526]    [Pg.464]    [Pg.143]    [Pg.157]    [Pg.157]    [Pg.235]    [Pg.235]    [Pg.3741]    [Pg.526]    [Pg.464]    [Pg.16]    [Pg.201]    [Pg.201]    [Pg.203]    [Pg.210]    [Pg.342]    [Pg.356]    [Pg.251]    [Pg.119]    [Pg.91]    [Pg.268]    [Pg.210]    [Pg.517]    [Pg.8]    [Pg.463]    [Pg.600]    [Pg.603]   


SEARCH



Adsorption, polymeric surfactants steric stabilization

Emulsion polymerization steric stabilization

Polymeric stabilization

Polymeric stabilizers)

Polymeric steric stabilizers

Polymeric steric stabilizers

Polymeric surfactants steric stabilization, particle -adsorbed layer

Polymerization Stabilizer

Repulsion, polymeric surfactant adsorption, steric stabilization

Stability steric

Steric stabilization

Steric stabilizer

© 2024 chempedia.info