Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymeric polydimethylsiloxane

Detailed procedures for the synthesis ofa,o>-organofunctionally terminated siloxane oligomers with well defined structures have been given 50,66-67). Tables 6 and 7 provide the data on the synthesis and characteristics of aminopropyl and hydroxybutyl terminated polydimethylsiloxane oligomers prepared via anionic and cationic ringopening polymerization of octamethylcyclotetrasiloxane (D in the presence of appropriate disiloxanes, respectively. [Pg.21]

Although each of these cyclic siloxane monomers can be polymerized separately to synthesize the respective homopolymers, in practice they are primarily used to modify and further improve some specific properties of polydimethylsiloxanes. The properties that can be changed or modified by the variations in the siloxane backbone include the low temperature flexibility (glass transition temperature, crystallization and melting behavior), thermal, oxidation, and radiation stability, solubility characteristics and chemical reactivity. Table 9 summarizes the effect of various substituents on the physical properties of resulting siloxane homopolymers. The... [Pg.23]

Initiation of stannous octoate-catalyzed copolymerization of e-caprolactone with glycerol was used to prepare a series of trifunctional hydroxy-end blocked oligomers, which were then treated with hexane-1,6-diisocyanate to form elastomeric polyesterurethanes with different crosslink densities (49). Initiation of e-caprolactone polymerization with a hydroxypropyl-terminated polydimethylsiloxane in the presence of dibutyl tin dilaurate has been used to prepare a polyester-siloxane block copolymer (Fig. 4) (50). [Pg.80]

Current polymeric entubulization repair methods for peripheral nerve regeneration use various nondegradable and biodegradable materials. The most common nondegradable material investigated has been silicone rubber. Medical grade silicone rubber, polydimethylsiloxane, maintains its shape and can be filled with neurotrophic factors or extracellular... [Pg.48]

Dense membranes are a special type of polymeric membranes. Jacobs et al. published on the use of polydimethylsiloxane (PDMS) dense membranes in the hydrogenation of dimethylitaconate and acetophenone using standard homogeneous catalysts (see Section 4.6.1)[48]. The membranes were homemade from a PDMS solution in hexane, which was cross-linked in a vacuum oven at 100°C. The membranes were able almost completely to retain unmodified Ru-BINAP dissolved in isopropanol. However, as mentioned earlier, these applications will strongly depend on the size, i.e. molecular weight, of the substrate to be converted in order to guarantee a sufficient difference in size of the product and the catalyst to be retained. [Pg.80]

A newer addition is in-tube SPME that makes use of an open capillary device and can be coupled online with GC, HPLC, or LC/MS. All these techniques and their utilization in pharmaceutical and biomedical analysis were recently reviewed by Kataoka.45 Available liquid stationary fiber coatings for SPME include polydimethylsiloxane (PDMS) and polyacrylate (PA) for extracting nonpolar and polar compounds, respectively. Also in use for semipolar compounds are the co-polymeric PDMS-DVB, Carboxen (CB)-PDMS, Carbowax (CW)-DVB, and Carbowax-templated resin (CW-TPR). A few examples of in-tube SPME extractions from biological matrices are shown in Table 1.19 and drawn from Li and coworkers.166... [Pg.53]

In order to keep polyamides soluble in relatively apolar solvents, the use of flexible (macro)monomers such as a, co-(diaminopropyl)polydimethylsiloxane [52] or oligoethyleneglycol-based diamines [53, 54] has been proven to be a successful approach (Fig. 10). Poly condensations of dimethyl adipate with a variety of diamines were successful in bulk and at moderate temperatures between 60 and 100 °C (reaction A in Fig. 10). The low temperatures (60-100 °C) that suffice in these polymerizations also allow the use of monomers that are thermally instable, such as diethyl fumarate [53]. Moreover, multifunctional amines could be regioselectively polymerized up to molecular weights of 9 kDa, making lipase catalysts a valuable tool for the preparation of well-defined polyamides that can be further functionalized with active groups. [Pg.70]

Copolymers. Copolymers from mixtures of different bisphenols or from mixtures of dichlorosulfone and dichlorobenzophenone have been reported in the patent literature. Bifunctional hydroxyl-terminated polyethersulfone oligomers are prepared readily by the polyetherification reaction simply by providing a suitable excess of the bisphenol. Block copolymers are obtained by reaction of the oligomers with other polymers having end groups capable of reacting with the phenol. Multiblock copolymers of BPA-polysulfone with polysiloxane have been made in this way by reaction with dimethyl amino-terminated polydimethylsiloxane the products are effective impact modifiers for the polyethersulfone (79). Block copolymers with nylon-6 are obtained when chlorine-terminated oligomers, which are prepared by polyetherification with excess dihalosulfone, are used as initiators for polymerization of caprolactam (80). [Pg.332]

Koberstein and coworkers121 have examined the effects of a polydimethylsiloxane-polystyrene (PDMS-PS) block copolymer on the interfacial tensions of blends of PDMS and polystyrene. As little as 0.002 wt% of the copolymer, added to the siloxane phase, was sufficient to lower the interfacial tension by 82% in the case of a blend of polystyrene (Afn = 4,000) and PDMS (Mn = 4,500). No further reduction in interfacial tension was observed at higher copolymer levels due to micelle formation. Riess122 has polymerized styrene in the presence of a silicon oil and a polydimethylsiloxane-polystyrene block copolymer to obtain a polystyrene in which 0.1-1 pm droplets of silicone oil are dispersed. This material displayed a lowered coefficient of kinetic friction on steel compared to pure polystyrene. [Pg.2238]


See other pages where Polymeric polydimethylsiloxane is mentioned: [Pg.328]    [Pg.223]    [Pg.103]    [Pg.33]    [Pg.21]    [Pg.32]    [Pg.36]    [Pg.51]    [Pg.63]    [Pg.69]    [Pg.74]    [Pg.75]    [Pg.253]    [Pg.151]    [Pg.84]    [Pg.183]    [Pg.355]    [Pg.366]    [Pg.77]    [Pg.654]    [Pg.657]    [Pg.664]    [Pg.665]    [Pg.666]    [Pg.669]    [Pg.671]    [Pg.146]    [Pg.171]    [Pg.619]    [Pg.664]    [Pg.223]    [Pg.601]    [Pg.328]    [Pg.2227]    [Pg.86]    [Pg.100]    [Pg.24]   
See also in sourсe #XX -- [ Pg.92 ]




SEARCH



Polydimethylsiloxane

Polydimethylsiloxanes

© 2024 chempedia.info