Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymeric free volume

Usually, free-radical initiators such as azo compounds or peroxides are used to initiate the polymerization of acrylic monomers. Photochemical (72—74) and radiation-initiated (75) polymerizations are also well known. At a constant temperature, the initial rate of the bulk or solution radical polymerization of acrylic monomers is first order with respect to monomer concentration and one-half order with respect to the initiator concentration. Rate data for polymerization of several common acrylic monomers initiated with 2,2 -azobisisobutyronittile (AIBN) [78-67-1] have been determined and are shown in Table 6. The table also includes heats of polymerization and volume percent shrinkage data. [Pg.165]

An important part of the optimization process is the stabilization of the monomer-template assemblies by thermodynamic considerations (Fig. 6-11). The enthalpic and entropic contributions to the association will determine how the association will respond to changes in the polymerization temperature [18]. The change in free volume of interaction will determine how the association will respond to changes in polymerization pressure [82]. Finally, the solvent s interaction with the monomer-template assemblies relative to the free species indicates how well it will stabilize the monomer-template assemblies in solution [16]. Here each system must be optimized individually. Another option is simply to increase the concentration of the monomer or the template. In the former case, a problem is that the crosslinking as well as the potentially nonselective binding will increase simultaneously. In the... [Pg.174]

The reactivity of macromonomers in copolymerizalion is strongly dependent on the particular comonomer-macromonomer pair. Solvent effects and the viscosity of the polymerization medium can also be important. Propagation may become diffusion controlled such that the propagation rate constant and reactivity ratios depend on the molecular weight of the macromonomer and the viscosity or, more accurately, the free volume of the medium. [Pg.401]

The sizes and concentration of the free-volume cells in a polyimide film can be measured by PALS. The positrons injected into polymeric material combine with electrons to form positroniums. The lifetime (nanoseconds) of the trapped positronium in the film is related to the free-volume radius (few angstroms) and the free-volume fraction in the polyimide can be calculated.136 This technique allows a calculation of the dielectric constant in good agreement with the experimental value.137 An interesting correlation was found between the lifetime of the positronium and the diffusion coefficient of gas in polyimide.138,139 High permeabilities are associated with high intensities and long lifetime for positron annihilation. [Pg.300]

Stimulation of the conformational relaxation movements of the polymeric chains (by repulsion between the nascent positive charges), with the generation of free volume. Local nuclei or general and simultaneous relaxation occur, depending on the initial compaction of the polymer film. [Pg.374]

The ESCR model allows us to derive from both Eq. (51) and the above experimental results an expression for the interchain free volume (od) left inside the polymeric structure after polarization at a given cathodic overpotential rjc ... [Pg.402]

We define a nucleation overpotential rjN EN E0 (Fig. 36) required to make the N0 oxidation nuclei appear. The nucleation overpotential is related to the degree of closure (compaction) of the polymeric entanglement ( ), expressed as the fraction of interchain free volume destroyed after polarization at a given potential Ec, compared with the amount of free volume present at Es. [Pg.409]

The action of a muscle is a consequence of electrochemically stimulated conformational relaxation processes that occur along every electroactive chain inside a polymeric film. A free-volume model dependent on the... [Pg.427]

In the literature there is only one serious attempt to develop a detailed mechanistic model of free radical polymerization at high conversions (l. > ) This model after Cardenas and 0 Driscoll is discussed in some detail pointing out its important limitations. The present authors then describe the development of a semi-empirical model based on the free volume theory and show that this model adequately accounts for chain entanglements and glassy-state transition in bulk and solution polymerization of methyl methacrylate over wide ranges of temperature and solvent concentration. [Pg.43]

A useful model should account for a reduction of kt and kp with increase in polymer molecular weight and concentration and decrease in solvent concentration at polymerization temperatures both below and above the Tg of the polymer produced. For a mechanistic model this would involve many complex steps and a large number of adjustable parameters. It appears that the only realistic solution is to develop a semi-empirical model. In this context the free-volume theory appears to be a good starting point. [Pg.49]

In polymer electrolytes (even prevailingly crystalline), most of ions are transported via the mobile amorphous regions. The ion conduction should therefore be related to viscoelastic properties of the polymeric host and described by models analogous to that for ion transport in liquids. These include either the free volume model or the configurational entropy model . The former is based on the assumption that thermal fluctuations of the polymer skeleton open occasionally free volumes into which the ionic (or other) species can migrate. For classical liquid electrolytes, the free volume per molecule, vf, is defined as ... [Pg.140]

Analysis of mixture models, established techniques, 61 Analysis of styrene suspension polymerization continuous models, 210-211 efficiency, 211,212f,213 free volume theory, 215,217 initiator conversion vs. [Pg.314]

Mechanical and chemical methods for qualitative and quantitative measurement of polymer structure, properties, and their respective processes during interrelation with their environment on a microscopic scale exist. Bosch et al. [83] briefly discuss these techniques and point out that most conventional techniques are destructive because they require sampling, may lack accuracy, and are generally not suited for in situ testing. However, the process of polymerization, that is, the creation of a rigid structure from the initial viscous fluid, is associated with changes in the microenvironment on a molecular scale and can be observed with free-volume probes [83, 84]. [Pg.289]

With further understanding how molecular rotors interact with their environment and with application-specific chemical modifications, a more widespread use of molecular rotors in biological and chemical studies can be expected. Ratiometric dyes and lifetime imaging will enable accurate viscosity measurements in cells where concentration gradients exist. The examination of polymerization dynamics benefits from the use of molecular rotors because of their real-time response rates. Presently, the reaction may force the reporters into specific areas of the polymer matrix, for example, into water pockets, but targeted molecular rotors that integrate with the matrix could prevent this behavior. With their relationship to free volume, the field of fluid dynamics can benefit from molecular rotors, because the applicability of viscosity models (DSE, Gierer-Wirtz, free volume, and WLF models) can be elucidated. Lastly, an important field of development is the surface-immobilization of molecular rotors, which promises new solid-state sensors for microviscosity [145]. [Pg.300]

The model captures the features seen in the experiment very well. The initial rate of polymerization and the conversion at the onset of autoacceleration are nearly identical with the experimentally generated values as is the rate of autodeceleration. The conversion and value of maximum rate are within 5%. The difference in maximum rate can be ascribed to the high sensitivity of autoacceleration on the At parameter a small change in can greatly influence the rate of polymerization during autoacceleration. The conversion at which the maximum rate occurs is dependent upon fcp, i.e., the free volume (and conversion) at which autodeceleration sets in. The simulated rate also shows a tail around 80% conversion, which can be ascribed to the DSC not capturing polymerization at high conversion and low rate. [Pg.57]

In this paper, the kinetics and polymerization behavior of HEMA and DEGDMA initiated by a combination of DMPA (a conventional initiator) and TED (which produces DTC radicals) have been experimentally studied. Further, a free volume based kinetic model that incorporates diffusion limitations to propagation, termination by carbon-carbon radical combination and termination by carbon-DTC radical reaction has been developed to describe the polymerization behavior in these systems. In the model, all kinetic parameters except those for the carbon-DTC radical termination were experimentally determined. The agreement between the experiment and the model is very good. [Pg.61]

Further development of the Flory-Huggins method in direction of taking into account the effects of far interaction, swelling of polymeric ball in good solvents [4, 5], difference of free volumes of polymer and solvent [6, 7] leaded to complication of expression for virial coefficient A and to growth of number of parameters needed for its numerical estimation, but weakly reflected on the possibility of equation (1) to describe the osmotic pressure of polymeric solutions in a wide range of concentrations. [Pg.40]

Polymers dynamics of polymer chains microviscosity free volume orientation of chains in stretched samples miscibility phase separation diffusion of species through polymer networks end-to-end macrocyclization dynamics monitoring of polymerization degradation... [Pg.12]

Molecular rotors allow us to study changes in free volume of polymers as a function of polymerization reaction parameters, molecular weight, stereoregularity, crosslinking, polymer chain relaxation and flexibility. Application to monitoring of polymerization reactions is illustrated in Box 8.1. [Pg.232]

The dual fluorescing type 2 compounds DMABN and its ester derivatives have been used to extract detailed free volume parameters, especially for the case where the probes are covalently linked to the polymeric backbone, e.g., by an oxymethylene chain of variable length/97-101 As the TICT reaction requires a comparatively large reaction volume, the measurable effects are especially strong in solutions of these labeled polymers but they tend to disappear for the pure polymer due to its too-large... [Pg.123]

DMABN suffers from the fact that dual fluorescence is only observable for polar media. Therefore, the pretwisted ester DMPYRBEE has been developed which shows dual fluorescence also in alkane solvents. 9 This probe allowed measurement of nonpolar polymeric siloxane oils and a comparison with the corresponding measurements using an EXCIMER probe. As expected from the decreased reaction volume necessary for the TICT photoreaction, the latter is usable down to much lower temperatures (higher viscosities) and probes a larger fraction of free volume. 26 ... [Pg.124]

D. Anwand, F. W. Muller, B. Strehmel, and K. Schiller, Determination of the molecular mobility and the free volume of thin polymeric films with fluorescence probes, Makromol. Chem. 192, 1981-1991 (1991). [Pg.146]


See other pages where Polymeric free volume is mentioned: [Pg.21]    [Pg.247]    [Pg.21]    [Pg.247]    [Pg.151]    [Pg.223]    [Pg.338]    [Pg.340]    [Pg.44]    [Pg.49]    [Pg.659]    [Pg.108]    [Pg.141]    [Pg.480]    [Pg.91]    [Pg.125]    [Pg.127]    [Pg.288]    [Pg.289]    [Pg.290]    [Pg.301]    [Pg.269]    [Pg.17]    [Pg.207]    [Pg.51]    [Pg.54]    [Pg.196]   
See also in sourсe #XX -- [ Pg.86 , Pg.88 ]




SEARCH



Free volume

Polymerization volume

© 2024 chempedia.info