Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer supports structure

Polymer ashing is another process related method. This process is fairly complex and involves patterning of a polymer layer during the release. First, structures are partially released by a timed etch. Next, a polymer film is deposited onto the partially released structures. This film is patterned into support posts that hold the structure in position as the remainder of the sacrificial layer is etched away. Because the polymer support structures hold the devices in place, there is no concern for special drying techniques. Finally, the polymer supports are burned away, typically by ashing in an oxygen plasma.This leaves behind fully released and free-standing microstructures. [Pg.3052]

Methods of synthesizing polymers with carbonyl groups as supports of transition metal complexes have, moreover, been analyzed [104]. The activity of these catalysts in polymerization, oligomerization and hydrogenation reactions as a function of the polymer support structure has been discussed. [Pg.88]

Many attempts have been made at engineering vascular grafts by providing a tubular, porous, polymer support structure. The structure must be mechan-... [Pg.176]

The structures of these ylide polymers were determined and confirmed by IR and NMR spectra. These were the first stable sulfonium ylide polymers reported in the literature. They are very important for such industrial uses as ion-exchange resins, polymer supports, peptide synthesis, polymeric reagent, and polyelectrolytes. Also in 1977, Hass and Moreau [60] found that when poly(4-vinylpyridine) was quaternized with bromomalonamide, two polymeric quaternary salts resulted. These polyelectrolyte products were subjected to thermal decyana-tion at 7200°C to give isocyanic acid or its isomer, cyanic acid. The addition of base to the solution of polyelectro-lyte in water gave a yellow polymeric ylide. [Pg.378]

Abstract An overview on the microwave-enhanced synthesis and decoration of the 2(lH)-pyrazinone system is presented. Scaffold decoration using microwave-enhanced transition-metal-catalyzed reactions for generating structural diversity, as well as the conversion of the 2(lH)-pyrazinone skeleton applying Diels-Alder reactions to generate novel heterocyclic moieties are discussed. The transfer of the solution phase to polymer-supported chemistry (SPOS) is also described in detail. [Pg.267]

The artificial lipid bilayer is often prepared via the vesicle-fusion method [8]. In the vesicle fusion process, immersing a solid substrate in a vesicle dispersion solution induces adsorption and rupture of the vesicles on the substrate, which yields a planar and continuous lipid bilayer structure (Figure 13.1) [9]. The Langmuir-Blodgett transfer process is also a useful method [10]. These artificial lipid bilayers can support various biomolecules [11-16]. However, we have to take care because some transmembrane proteins incorporated in these artificial lipid bilayers interact directly with the substrate surface due to a lack of sufficient space between the bilayer and the substrate. This alters the native properties of the proteins and prohibits free diffusion in the lipid bilayer [17[. To avoid this undesirable situation, polymer-supported bilayers [7, 18, 19] or tethered bilayers [20, 21] are used. [Pg.226]

Tennikov, M. B., Gazdina, N., Tennikova, T. B., and Svec, F., Effect of porous structure of macroporous polymer supports on resolution in high-performance membrane chromatography of proteins, J. Chromatogr. A, 798, 55, 1998. [Pg.309]

Figure 39 The enantioselective polymer-supported catalysts (61) of chiral oxazaborolidinone with cross-linking structures for use in the Diels-Alder reaction of methacrolein with cyclopentadiene. (Adapted from ref. 85.)... Figure 39 The enantioselective polymer-supported catalysts (61) of chiral oxazaborolidinone with cross-linking structures for use in the Diels-Alder reaction of methacrolein with cyclopentadiene. (Adapted from ref. 85.)...
As far as polymer supports for microwave-assisted SPOS are concerned, the use of cross-linked macroporous or microporous polystyrene (PS) resins has been most prevalent. In contrast to common belief, which states that the use of polystyrene resins limits reaction conditions to temperatures below 130 °C [14], it has been shown that these resins can withstand microwave irradiation for short periods of time, such as 20-30 min, even at 200 °C in solvents such as l-methyl-2-pyrrolidone or 1,2-dichlorobenzene [15]. Standard polystyrene Merrifield resin shows thermal stability up to 220 °C without any degradation of the macromolecular structure of the polymer backbone, which allows reactions to be performed even at significantly elevated temperatures. [Pg.294]

Only recently a selective crossed metathesis between terminal alkenes and terminal alkynes has been described using the same catalyst.6 Allyltrimethylsilane proved to be a suitable alkene component for this reaction. Therefore, the concept of immobilizing terminal olefins onto polymer-supported allylsilane was extended to the binding of terminal alkynes. A series of structurally diverse terminal alkynes was reacted with 1 in the presence of catalytic amounts of Ru.7 The resulting polymer-bound dienes 3 are subject to protodesilylation (1.5% TFA) via a conjugate mechanism resulting in the formation of products of type 6 (Table 13.3). Mixtures of E- and Z-isomers (E/Z = 8 1 -1 1) are formed. The identity of the dominating E-isomer was established by NOE analysis. [Pg.146]

The reductive dehalogenation of haloalkanes has also been achieved in high yield using polymer supported hydridoiron tetracarbonyl anion (Table 11.15). In reactions where the structure of the alkyl group is such that anionic cleavage is not favoured, carbonylation of the intermediate alkyl(hydrido)iron complex produces an aldehyde (see Chapter 8) [3]. [Pg.500]

Both temperature and pressure have a significant influence on cell performance the impact of these parameters will be described later. Present cells operate at 80°C, nominally, 0.285 MPa (30 psig) (5), and a range of 0.10 to 1.0 MPa (10 to 100 psig). Using appropriate current collectors and supporting structure, polymer electrolyte fuel cells and electrolysis cells should be capable of operating at pressures up to 3000 psi and differential pressures up to 500 psi (4). [Pg.80]

Structure, Morphology, Physical Formats and Characterization of Polymer Supports... [Pg.1]


See other pages where Polymer supports structure is mentioned: [Pg.74]    [Pg.677]    [Pg.6]    [Pg.437]    [Pg.382]    [Pg.133]    [Pg.195]    [Pg.39]    [Pg.46]    [Pg.138]    [Pg.333]    [Pg.32]    [Pg.175]    [Pg.461]    [Pg.93]    [Pg.40]    [Pg.184]    [Pg.176]    [Pg.86]    [Pg.794]    [Pg.192]    [Pg.52]    [Pg.248]    [Pg.811]    [Pg.16]    [Pg.136]    [Pg.71]    [Pg.101]    [Pg.199]    [Pg.563]    [Pg.29]    [Pg.54]    [Pg.61]    [Pg.63]    [Pg.82]    [Pg.45]    [Pg.1]   
See also in sourсe #XX -- [ Pg.149 ]




SEARCH



Structural support

Support structures

Supporting structure

© 2024 chempedia.info