Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer melts complexity

Polymers owe much of their attractiveness to their ease of processing. In many important teclmiques, such as injection moulding, fibre spinning and film fonnation, polymers are processed in the melt, so that their flow behaviour is of paramount importance. Because of the viscoelastic properties of polymers, their flow behaviour is much more complex than that of Newtonian liquids for which the viscosity is the only essential parameter. In polymer melts, the recoverable shear compliance, which relates to the elastic forces, is used in addition to the viscosity in the description of flow [48]. [Pg.2534]

Many industrially important fluids cannot be described in simple terms. Viscoelastic fluids are prominent offenders. These fluids exhibit memory, flowing when subjected to a stress, but recovering part of their deformation when the stress is removed. Polymer melts and flour dough are typical examples. Both the shear stresses and the normal stresses depend on the history of the fluid. Even the simplest constitutive equations are complex, as exemplified by the Oldroyd expression for shear stress at low shear rates ... [Pg.96]

Design methods involving polymer melts are difficult because the flow behaviour of these materials is complex. In addition, flow properties of the melt are usually measured under well defined uniform conditions whereas unknown effects such as heating and cooling in processing equipment make service conditions less than ideal. However, sufficient experience has been gathered... [Pg.375]

Chapter 4 describes in general terms the processing methods which can be used for plastics and wherever possible the quantitative aspects are stressed. In most cases a simple Newtonian model of each of the processes is developed so that the approach taken to the analysis of plastics processing is not concealed by mathematical complexity. Chapter 5 deals with the aspects of the flow behaviour of polymer melts which are relevant to the processing methods. The models are developed for both Newtonian and Non-Newtonian (Power Law) fluids so that the results can be directly compared. [Pg.520]

The hydromechanics of flows of gas-containing polymer melts is extremely complicated to analyse and describe mathematically. Nevertheless, comprehensive experimental investigations in this sphere have yielded simple models of unidimensional flows, and solved several problems pertaining to the physics and hydromechanics of complex medium flows. [Pg.120]

Rheology deals with the deformation and flow of any material under the influence of an applied stress. In practical apphcations, it is related with flow, transport, and handling any simple and complex fluids [1], It deals with a variety of materials from elastic Hookean solids to viscous Newtonian liquid. In general, rheology is concerned with the deformation of solid materials including metals, plastics, and mbbers, and hquids such as polymer melts, slurries, and polymer solutions. [Pg.776]

One of the common problems associated with underwater pelletizers is the tendency of the die holes to freeze off. This results in nonuniform polymer melt flow, increased pressure drop, and irregular extrudate shape. A detailed engineering analysis of pelletizers is performed which accounts for the complex interaction between the fluid mechanics and heat transfer processes in a single die hole. The pelletizer model is solved numerically to obtain velocity, temperature, and pressure profiles. Effect of operating conditions, and polymer rheology on die performance is evaluated and discussed. [Pg.132]

The flow of polymer melt through the pelletizing die is quite complex. This is mainly because the individual... [Pg.132]

The actual mathematical form of this function will depend upon the nature (i.e., the constitution ) of the particular material. Most common fluids of simple structure water, air, glycerine, oils, etc.) are Newtonian. However, fluids with complex structure (polymer melts or solutions, suspensions, emulsions, foams, etc.) are generally non-Newtonian. Some very common... [Pg.57]

Generally, the rheology of polymer melts depends strongly on the temperature at which the measurement is carried out. It is well known that for thermorheological simplicity, isotherms of storage modulus (G (co)), loss modulus (G"(complex viscosity (r (co)) can be superimposed by horizontal shifts along the frequency axis ... [Pg.284]

The answer to our question at the beginning of this summary therefore has to be as follows. When you want to locate the glass transition of a polymer melt, find the temperature at which a change in dynamics occurs. You will be able to observe a developing time-scale separation between short-time, vibrational dynamics and structural relaxation in the vicinity of this temperature. Below this crossover temperature, one will find that the temperature dependence of relaxation times assumes an Arrhenius law. Whether MCT is the final answer to describe this process in complex liquids like polymers may be a point of debate, but this crossover temperature is the temperature at which the glass transition occurs. [Pg.56]

If the ideas of Marrucci [69] are correct and the non-monotonic predictions of the simple Doi-Edwards theory need to be modified in the case of polymer melts (for a recent development see [78]), then an explanation will be required for the apparent difference at high shear rates between melts and wormlike micelle solutions. There is also evidence that ordinary entangled polymer solutions do exhibit non-monotonic shear-stress behaviour [79]. As in the field of linear deformations, it may be that a study of the apparently more complex branched polymers in strong flows may shed light on their deceptively simple linear cous-... [Pg.246]

Then we address the dynamics of diblock copolymer melts. There we discuss the single chain dynamics, the collective dynamics as well as the dynamics of the interfaces in microphase separated systems. The next degree of complication is reached when we discuss the dynamic of gels (Chap. 6.3) and that of polymer aggregates like micelles or polymers with complex architecture such as stars and dendrimers. Chapter 6.5 addresses the first measurements on a rubbery electrolyte. Some new results on polymer solutions are discussed in Chap. 6.6 with particular emphasis on theta solvents and hydrodynamic screening. Chapter 6.7 finally addresses experiments that have been performed on biological macromolecules. [Pg.8]

The key to a controlled molecular weight build-up, which leads to the control of product properties such as glass transition temperature and melt viscosity, is the use of a molar excess of diisopropanolamine as a chain stopper. Thus, as a first step in the synthesis process, the cyclic anhydride is dosed slowly to an excess of amine to accommodate the exothermic reaction and prevent unwanted side reactions such as double acylation of diisopropanolamine. HPLC analysis has shown that the reaction mixture after the exothermic reaction is quite complex. Although the main component is the expected acid-diol, unreacted amine and amine salts are still present and small oligomers already formed. In the absence of any catalyst, a further increase of reaction temperature to 140-180°C leads to a rapid polycondensation. The expected amount of water is distilled (under vacuum, if required) from the hot polymer melt in approximately 2-6 h depending on the anhydride used. At the end of the synthesis the concentration of carboxylic acid groups value reaches the desired low level. [Pg.48]


See other pages where Polymer melts complexity is mentioned: [Pg.2364]    [Pg.418]    [Pg.415]    [Pg.189]    [Pg.163]    [Pg.245]    [Pg.344]    [Pg.586]    [Pg.54]    [Pg.113]    [Pg.114]    [Pg.115]    [Pg.166]    [Pg.86]    [Pg.777]    [Pg.183]    [Pg.203]    [Pg.390]    [Pg.434]    [Pg.124]    [Pg.201]    [Pg.290]    [Pg.61]    [Pg.59]    [Pg.1]    [Pg.203]    [Pg.251]    [Pg.253]    [Pg.106]    [Pg.209]    [Pg.364]    [Pg.757]    [Pg.779]    [Pg.189]    [Pg.5]   
See also in sourсe #XX -- [ Pg.62 , Pg.72 ]




SEARCH



Complex polymers

Melted polymer

Melts complexes

Polymer complexation

Polymer melts

© 2024 chempedia.info