Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers in Zeolites

Polyacetylene and derivatives in zeolites Heteroaromatic conducting polymers in zeolites Carbon-based conducting materials in nanometer channels Conclusions References... [Pg.483]

Polymers and Carbon Materials in Zeolites 9.3.1 Polymers in Zeolites... [Pg.621]

The expense is justified, however, when tackling polymer chains, where reconstruction of an entire chain is expressed as a succession of atomic moves of this kind [121]. The first atom is placed at random the second selected nearby (one bond length away), the third placed near the second, and so on. Each placement of an atom is given a greater chance of success by selecting from multiple locations, as just described. Biasing factors are calculated for the whole multi-atom move, forward and reverse, and used as before in the Metropolis prescription. For fiirther details see [122, 123. 124. 125]. A nice example of this teclmique is the study [126. 127] of the distribution of linear and branched chain alkanes in zeolites. [Pg.2266]

The principal adsorbents used in GSC are silica, alumina, graphltlzed carbon blacks, porous polymer beads, zeolites and cyclodextrlns [8,430,431,445]. The bonded phase sorbents discussed in section 2.2.3 could also be considered as modified adsorbents in many respects. [Pg.105]

In this way, the conjunct polymers serve as a reservoir of hydride ions. Under some conditions, the polymers are a source of hydride ions, but they accept these ions under other conditions. Substantial amounts of the saturated products are supposedly formed via this route with sulfuric acid. In zeolites, species similar to conjunct polymers also form. The heavy hydrocarbon molecules, which deactivate the catalyst by pore blocking or by site blocking, are generally termed soft coke or low-temperature coke , because of the absence of aromatic species. [Pg.267]

Only scant information is available about the influence of coke formation on the alkylation mechanism. It has been proposed that, similar to the conjunct polymers in liquid acids, heavy unsaturated molecules participate in hydride transfer reactions. However, no direct evidence was given for this proposition (69). In another study, the hydride transfer from unsaturated cyclic hydrocarbons was deduced from an initiation period in the activity of NaHY zeolites complete conversion of butene was achieved only after sufficient formation of such compounds (73). [Pg.267]

In a series of investigations of the cracking of alkanes and alkenes on Y zeolites (74,75), the effect of coke formation on the conversion was examined. The coke that formed was found to exhibit considerable hydride transfer activity. For some time, this activity can compensate for the deactivating effect of the coke. On the basis of dimerization and cracking experiments with labeled 1-butene on zeolite Y (76), it is known that substantial amounts of alkanes are formed, which are saturated by hydride transfer from surface polymers. In both liquid and solid acid catalysts, hydride transfer from isoalkanes larger than... [Pg.267]

Professor M. R. Maurya is currently heading the Department of Chemistry, IIT Roorkee. He has more than 26 years of teaching and research experience. He had worked in Loyola University of Chicago, USA, Iowa State University, Ames, Iowa, USA, National Chemical Laboratory, Pune, and Pune University Pune, before joining department of Chemistry at IIT Roorkee in 1996 and became full professor in 2008. His current area of research interests include structural and functional models of vanadate-dependent haloperoxidases, coordination polymers and their catalytic study, metal complexes encapsulated in zeolite cages and their catalytic study, polymer-anchored metal complexes and their catalytic study, and medicinal aspects of coordination compounds. So far, he has guided 21 doctoral and 7 Master s theses, co-authored more than 140 research papers in the international refereed journals. [Pg.35]

The Maxwell model can also guide the selection of a proper polymer material for a selected zeolite at a given volume fraction for a target separation. For most cases, however, the Maxwell model cannot be applied to guide the selection of polymer or zeolite materials for making new mixed-matrix membranes due to the lack of permeabihty and selectivity information for most of the pure zeolite materials. In addition, although this Maxwell model is well-understood and accepted as a simple and effective tool for estimating mixed-matrix membrane properties, sometimes it needs to be modified to estimate the properties of some non-ideal mixed-matrix membranes. [Pg.336]

Glassy polymers with much higher glass transition temperatures and more rigid polymer chains than rubbery polymers have been extensively used as the continuous polymer matrices in the zeolite/polymer mixed-matrix membranes. Typical glassy polymers in the mixed-matrix membranes include cellulose acetate, polysul-fone, polyethersulfone, polyimides, polyetherimides, polyvinyl alcohol, Nafion , poly(4-methyl-2-pentyne), etc. [Pg.336]

The chemical composihons of the zeolites such as Si/Al ratio and the type of cation can significantly affect the performance of the zeolite/polymer mixed-matrix membranes. MiUer and coworkers discovered that low silica-to-alumina molar ratio non-zeolitic smaU-pore molecular sieves could be properly dispersed within a continuous polymer phase to form a mixed-matrix membrane without defects. The resulting mixed-matrix membranes exhibited more than 10% increase in selectivity relative to the corresponding pure polymer membranes for CO2/CH4, O2/N2 and CO2/N2 separations [48]. Recently, Li and coworkers proposed a new ion exchange treatment approach to change the physical and chemical adsorption properties of the penetrants in the zeolites that are used as the dispersed phase in the mixed-matrix membranes [56]. It was demonstrated that mixed-matrix membranes prepared from the AgA or CuA zeolite and polyethersulfone showed increased CO2/CH4 selectivity compared to the neat polyethersulfone membrane. They proposed that the selectivity enhancement is due to the reversible reaction between CO2 and the noble metal ions in zeolite A and the formation of a 7i-bonded complex. [Pg.338]

Reports on mixed-matrix membranes in the Hterature mainly focus on dense films. Mixed-matrix dense film has a symmetric structure and a thickness of more than 20 tm for most studies. Although dense films are not commercially attractive, they are used to measure the intrinsic separation properties including selectivity and permeability of the mixed-matrix membranes. Therefore, promising polymer and zeolite materials for making asymmetric mixed-matrix membranes for a particular separation can be identified through dense film study. [Pg.341]

Surface interactions between water and polymer networks have a profound effect on the water structure. The properties of water in these and other heterogeneous systems are sensitive to the size of the network pores and have been described by the two-phase model which assumes partition of the water between the "bulk and the "bound water phases" Evidence for this partition has been obtained in several proton NMR studies and also in ESR studies of paramagnetic probes in zeolites, silica gels and in water containing polymers. ... [Pg.266]

Vanadium-catalyzed hydrocarbon oxidation with peroxides can be carried out also by supporting the catalyst with the appropriate ligand on polymers " , on sUica " or encapsulating it in zeolites ". Similar activity has been obtained with vanadium-containing... [Pg.1116]

If the recovery of the adsorbed VOCs is highly desirable, then instead of steam, a vacuum regeneration system may be used. According to this method, the VOCs are forced to volatilize not by temperature, but by means of pressure. Specifically, a vacuum pump is employed to decrease the pressure in the carbon below the vapor pressure of the VOCs, which leads to then1 boiling at ambient temperature. This method is generally used with carbons, polymers, and zeolite adsorbents (EPA, 1999). [Pg.348]

The dependence of Dt on gas molecular size has been found to be He > C02 > Ar > N2 > CH in four different polymers 23 25>26,39). This trend correlates smoothly with the minimum effective gas molecular diameter deduced from molecular sieving effects in zeolites 39). The corresponding trend of D2 is not so clearcut,... [Pg.105]


See other pages where Polymers in Zeolites is mentioned: [Pg.305]    [Pg.10]    [Pg.305]    [Pg.10]    [Pg.194]    [Pg.219]    [Pg.57]    [Pg.116]    [Pg.114]    [Pg.210]    [Pg.39]    [Pg.1426]    [Pg.273]    [Pg.678]    [Pg.76]    [Pg.333]    [Pg.333]    [Pg.334]    [Pg.336]    [Pg.348]    [Pg.338]    [Pg.335]    [Pg.490]    [Pg.336]    [Pg.224]    [Pg.235]    [Pg.462]    [Pg.100]    [Pg.207]    [Pg.82]    [Pg.87]    [Pg.513]    [Pg.597]    [Pg.336]   


SEARCH



Polymers zeolites

© 2024 chempedia.info