Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer glasses, relaxation times

The solidity of gel electrolytes results from chain entanglements. At high temperatures they flow like liquids, but on cooling they show a small increase in the shear modulus at temperatures well above T. This is the liquid-to-rubber transition. The values of shear modulus and viscosity for rubbery solids are considerably lower than those for glass forming liquids at an equivalent structural relaxation time. The local or microscopic viscosity relaxation time of the rubbery material, which is reflected in the 7], obeys a VTF equation with a pre-exponential factor equivalent to that for small-molecule liquids. Above the liquid-to-rubber transition, the VTF equation is also obeyed but the pre-exponential term for viscosity is much larger than is typical for small-molecule liquids and is dependent on the polymer molecular weight. [Pg.513]

In summary, the NFS investigation of FC/DBP reveals three temperature ranges in which the detector molecule FC exhibits different relaxation behavior. Up to 150 K, it follows harmonic Debye relaxation ( exp(—t/x) ). Such a distribution of relaxation times is characteristic of the glassy state. The broader the distribution of relaxation times x, the smaller will be. In the present case, takes values close to 0.5 [31] which is typical of polymers and many molecular glasses. Above the glass-to-liquid transition at = 202 K, the msd of iron becomes so large that the/factor drops practically to zero. [Pg.491]

This relative importance of relaxation and diffusion has been quantified with the Deborah number, De [119,130-132], De is defined as the ratio of a characteristic relaxation time A. to a characteristic diffusion time 0 (0 = L2/D, where D is the diffusion coefficient over the characteristic length L) De = X/Q. Thus rubbers will have values of De less than 1 and glasses will have values of De greater than 1. If the value of De is either much greater or much less than 1, swelling kinetics can usually be correlated by Fick s law with the appropriate initial and boundary conditions. Such transport is variously referred to as diffusion-controlled, Fickian, or case I sorption. In the case of rubbery polymers well above Tg (De < c 1), substantial swelling may occur and... [Pg.523]

The transition from ideal elastic to plastic behaviour is described by the change in relaxation time as shown by the stress relaxation in Fig. 66. The immediate or plastic decrease of the stress after an initial stress cr0 is described by a relaxation time equal to zero, whereas a pure elastic response corresponds with an infinite relaxation time. The relaxation time becomes suddenly very short as the shear stress increases to a value equal to ry. Thus, in an experiment at a constant stress rate, all transitions occur almost immediately at the shear yield stress. This critical behaviour closely resembles the ideal plastic behaviour. This can be expected for a polymer well below the glass transition temperature where the mobility of the chains is low. At a high temperature the transition is a... [Pg.90]

The defining property of a structural glass transition is an increase of the structural relaxation time by more than 14 orders in magnitude without the development of any long-range ordered structure.1 Both the static structure and the relaxation behavior of the static structure can be accessed by scattering experiments and they can be calculated from simulations. The collective structure factor of a polymer melt, where one sums over all scattering centers M in the system... [Pg.2]

The two main sources for slow relaxation in polymers are entanglement effects and the glass transition. The first is entropic in origin, whereas the second—at least in chemically realistic polymer models—is primarily enthalpic. We write the largest relaxation time in the melt as... [Pg.14]

The answer to our question at the beginning of this summary therefore has to be as follows. When you want to locate the glass transition of a polymer melt, find the temperature at which a change in dynamics occurs. You will be able to observe a developing time-scale separation between short-time, vibrational dynamics and structural relaxation in the vicinity of this temperature. Below this crossover temperature, one will find that the temperature dependence of relaxation times assumes an Arrhenius law. Whether MCT is the final answer to describe this process in complex liquids like polymers may be a point of debate, but this crossover temperature is the temperature at which the glass transition occurs. [Pg.56]

A method of characterising transport mechanisms in solid ionic conductors has been proposed which involves a comparison of a structural relaxation time, t, and a conductivity relaxation time, t . This differentiates between the amorphous glass electrolyte and the amorphous polymer electrolyte, the latter being a very poor conductor below the 7. A decoupling index has been defined where... [Pg.139]

Table 4.1 Parameters related to the structural relaxation for the polymers investigated by NSE glass transition temperature Tg, position of the first static structure factor peak Qmax> shape parameter magnitude considered to perform the scaling of the NSE data, and temperature dependence of the structural relaxation time... Table 4.1 Parameters related to the structural relaxation for the polymers investigated by NSE glass transition temperature Tg, position of the first static structure factor peak Qmax> shape parameter magnitude considered to perform the scaling of the NSE data, and temperature dependence of the structural relaxation time...
There is a fundamental question concerning the nature of the self-motion of protons in glass-forming polymers. In Sect. 4.1 we have shown that the existing neutron scattering results on the self-correlation function at times close to the structural relaxation time r (Q-region 0.2t) with a KWW-like functional form and stretching exponents close to jSsO.5. [Pg.142]

The purpose of this paper is to establish the fundamental links between the glass transition, viscoelastic relaxation, and yield stress by investigating the relaxation processes in polymers. The relationship between temperature and relaxation time scale is represented by a shift factor (a). At temperature T... [Pg.124]

The AG model [48] for the dynamics of glass-forming liquids essentially postulates that the drop in S upon lowering temperature is accompanied by collective motion and that the fluid s structural relaxation times r are activated with a barrier height that is proportional [80] to the number z of polymer... [Pg.139]


See other pages where Polymer glasses, relaxation times is mentioned: [Pg.168]    [Pg.323]    [Pg.509]    [Pg.484]    [Pg.615]    [Pg.25]    [Pg.202]    [Pg.659]    [Pg.23]    [Pg.523]    [Pg.205]    [Pg.89]    [Pg.102]    [Pg.304]    [Pg.222]    [Pg.4]    [Pg.16]    [Pg.18]    [Pg.19]    [Pg.21]    [Pg.22]    [Pg.55]    [Pg.55]    [Pg.56]    [Pg.142]    [Pg.110]    [Pg.139]    [Pg.5]    [Pg.76]    [Pg.95]    [Pg.153]    [Pg.128]    [Pg.133]    [Pg.139]    [Pg.162]    [Pg.164]    [Pg.173]    [Pg.178]   
See also in sourсe #XX -- [ Pg.69 ]




SEARCH



Glass relaxation

Polymer glasses

Polymers relaxation time

Relaxation polymers

© 2024 chempedia.info