Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers, 649 cross-linking

Vinyl polymers cross-linked with divinyl monomers, for example, polystyrene polymerized in the presence of divinyl benzene. [Pg.137]

Acid-C t lyzed Chemistry. Acid-catalyzed reactions form the basis for essentially all chemically amplified resist systems for microlithography appHcations (61). These reactions can be generally classified as either cross-linking (photopolymerization) or deprotection reactions. The latter are used to unmask acidic functionality such as phenohc or pendent carboxyhc acid groups, and thus lend themselves to positive tone resist apphcations. Acid-catalyzed polymer cross-linking and photopolymerization reactions, on the other hand, find appHcation in negative tone resist systems. Representative examples of each type of chemistry are Hsted below. [Pg.125]

Fig. 37. Resist images obtained with a cross-linking monocomponent TSI resist (PHOST polymer), cross-linked by photo-oxidation using light at 193-nm wavelength. After exposure, the film was treated with a vapor of dimethyl silyl dimethyl amine and then plasma developed using O2—RIE (122). Fig. 37. Resist images obtained with a cross-linking monocomponent TSI resist (PHOST polymer), cross-linked by photo-oxidation using light at 193-nm wavelength. After exposure, the film was treated with a vapor of dimethyl silyl dimethyl amine and then plasma developed using O2—RIE (122).
The reactions are catalyzed by tertiary amines, quaternary ammonium salts, metal salts, and basic ion-exchange resins. The products are difficult to purify and generally contain low concentrations of acryhc acid and some diester which should be kept to a minimum since its presence leads to product instabihty and to polymer cross-linking. [Pg.156]

Two other important commercial uses of initiators are in polymer cross-linking and polymer degradation. In a cross-linking reaction, atom abstraction, usually a hydrogen abstraction, occurs, followed by termination by coupling of two polymer radicals to form a covalent cross-link ... [Pg.219]

P—H is a polymei with covalently attached hydrogen, L is the initiating radical, and P—P is a cross-linked polymer. Cross-linking is a commercially... [Pg.219]

Measurement of modulus over an extensive temperature range offers more information than T alone (16). Typical modulus—temperature curves are shown in Figure 1. Assuming that the reference temperature is the transition temperature of the copolymer, then curve A of Figure 1 is that of a softer polymer and curve B is that of a harder polymer. Cross-linking of the polymer elevates and extends the mbbery plateau Htde effect on T is noted until extensive cross-linking has been introduced. In practice, cross-linking of methacryhc polymers is used to decrease thermoplasticity and solubihty and to increase residence. [Pg.260]

Organic titanates perform three important functions for a variety of iadustrial appHcations. These are (/) catalysis, especially polyesterification and olefin polymerization (2) polymer cross-linking to enhance performance properties and (J) Surface modification for adhesion, lubricity, or pigment dispersion. [Pg.161]

Liquid crystal polymers Cross-linked Structures Polyblends... [Pg.933]

High-performance size exclusion chromatography is used for the characterization of copolymers, as well as for biopolymers (3). The packings for analyses of water-soluble polymers mainly consist of 5- to 10-/Am particles derived from deactivated silica or hydrophilic polymeric supports. For the investigation of organosoluble polymers, cross-linked polystyrene beads are still the column packing of choice. [Pg.219]

G(scission) = G(S) = Number of polymer chain scissions per 100 eV absorbed. G(cross-linldng) = G(X) = Number of polymer cross-link sites per 100 eV absorbed. [Pg.860]

Polymers and supermolecules modified using electron push-pull chro-mophores are also of particular interest for nonlinear optics (NLO) [10-15]. NLO material has attracted much interest over the past 20 years and has been widely applied in various field (telecommunications, optical data storage, information processing, microfabrication, etc.). Chemists have developed ways to introduce NLO chromophores into many type of polymers, such as Hnear polymers, cross-linked polymers, and branched polymers, and have demonstrated their performance in NLO appHcations. [Pg.206]

For general aspects on sonochemistry the reader is referred to references [174,180], and for cavitation to references [175,186]. Cordemans [187] has briefly reviewed the use of (ultra)sound in the chemical industry. Typical applications include thermally induced polymer cross-linking, dispersion of Ti02 pigments in paints, and stabilisation of emulsions. High power ultrasonic waves allow rapid in situ copolymerisation and compatibilisation of immiscible polymer melt blends. Roberts [170] has reviewed high-intensity ultrasonics, cavitation and relevant parameters (frequency, intensity,... [Pg.76]

Macromolecular Substitution Route. The current surge in poly-phosphazene research Is mainly a result of the development in the mid 1960 s (2-4) of a substitutive route to the synthesis of organo phosphazene high polymers. Before that time, only a sporadic interest in the subject existed because the known polymers, cross linked poly(dihalophosphazenes), (1,5) were insoluble and hydrolytically unstable. [Pg.254]

Nitrile oxide precursors have been prepared by the reaction of an isocyanate and an alkyl nitroacetate. These precursors release alkanol and carbon dioxide when heated, to liberate the highly reactive nitrile oxide species. An improved synthetic procedure has been developed to afford novel cross-linking agents based on difunctional, trifunctional and aliphatic precursors. Application of these agents to polymer cross-linking has been demonstrated (527). [Pg.105]

Polyphosphazene-based PEMs are potentially attractive materials for both hydrogen/air and direct methanol fuel cells because of their reported chemical and thermal stability and due to the ease of chemically attaching various side chains for ion exchange sites and polymer cross-linking onto the — P=N— polymer backbone. Polyphosphazenes were explored originally for use as elastomers and later as solvent-free solid polymer electrolytes in lithium batteries, and subsequently for proton exchange membranes. [Pg.364]


See other pages where Polymers, 649 cross-linking is mentioned: [Pg.116]    [Pg.133]    [Pg.171]    [Pg.230]    [Pg.28]    [Pg.191]    [Pg.192]    [Pg.425]    [Pg.247]    [Pg.425]    [Pg.352]    [Pg.920]    [Pg.221]    [Pg.740]    [Pg.502]    [Pg.125]    [Pg.52]    [Pg.239]    [Pg.96]    [Pg.168]    [Pg.734]    [Pg.28]    [Pg.412]    [Pg.362]    [Pg.365]    [Pg.57]   
See also in sourсe #XX -- [ Pg.184 , Pg.185 , Pg.186 , Pg.187 , Pg.188 ]

See also in sourсe #XX -- [ Pg.206 ]

See also in sourсe #XX -- [ Pg.131 , Pg.138 , Pg.140 , Pg.144 , Pg.220 ]

See also in sourсe #XX -- [ Pg.392 ]

See also in sourсe #XX -- [ Pg.96 , Pg.495 ]




SEARCH



Cross polymer

Linked polymer

Polymer cross-link

© 2024 chempedia.info