Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer concentration problem

In the semi-dilute regime, the rate of shear degradation was found to decrease with the polymer concentration [132, 170]. By extrapolation to the dilute regime, it is frequently argued that chain scission should be nonexistent in the absence of entanglements under laminar conditions. No definite proof for this statement has been reported yet and the problem of isolated polymer chain degradation in simple shear flow remains open to further investigation. [Pg.168]

Acid chlorides are very reactive and at room temperature react readily with amines. Synthesis by interfacial and solution methods is possible. However, care should be taken that the hydrochloric acid produced does not react with unreacted amine groups. With the strong basic aliphatic diamines, the acid binder must preferably be even more basic. The attainable molecular weights are strongly dependent on the concentrations this is particularly the case for easily precipitated terephthalamide polymers. Possible problems with the acid binder can be overcome by starting with silylated diamines.33,34 A typical example for interfacial polymerization of terephthalamides is PA-2,T.66... [Pg.182]

Achieving steady-state operation in a continuous tank reactor system can be difficult. Particle nucleation phenomena and the decrease in termination rate caused by high viscosity within the particles (gel effect) can contribute to significant reactor instabilities. Variation in the level of inhibitors in the feed streams can also cause reactor control problems. Conversion oscillations have been observed with many different monomers. These oscillations often result from a limit cycle behavior of the particle nucleation mechanism. Such oscillations are difficult to tolerate in commercial systems. They can cause uneven heat loads and significant transients in free emulsifier concentration thus potentially causing flocculation and the formation of wall polymer. This problem may be one of the most difficult to handle in the development of commercial continuous processes. [Pg.10]

The remaining problem in the model development is to estimate the decrease in kp as a function of conversion. As the reaction proceeds beyond the point of chain entanglement, a critical conversion is reached where the propagation reaction becomes diffusion controlled and kp begins to fall with further increase in polymer concentration. At the critical conversion, one may write... [Pg.53]

Low Conversion Reactors. The major problem in temperature control in low conversion reactors is the orders cf magnitude increase in viscosity as the conversion increases. Fig.8 shows the viscosity of a polystyrene solution as the function of percent PS. The data are for polystyrene with a Staudinger molecular weight of 60,000 at 100 C and 150 C in a cumene solution, a satisfactory analog for styrene monomer solutions. As the polymer concentration increases from 0 to 60%, viscosity increases from about 1 cp to 10 cp. [Pg.79]

Suppose that the reactivity of the A and B endgroups is independent of the chains to which they are attached. This is a form of the equal reactivity assumption that is needed for almost all analytical solutions to polymer kinetic problems. If it is satisfied, we can ignore the details of the polymerization and just concentrate on the disappearance of the endgroups. For a batch system. [Pg.473]

It may be shown that when the polymer concentration is large, the perturbation tends to be less. In particular, in a bulk polymer containing no diluent a = l for the molecules of the polymer. Thus the distortion of the molecular configuration by intramolecular interactions is a problem which is of concern primarily in dilute solutions. In the treatment of rubber elasticity—predominantly a bulk polymer problem—given in the following chapter, therefore, the subscripts may be omitted without ambiguity. [Pg.426]

As may be obvious from previous chapters, quantitative analysis requires more substantial advancements to be made than qualitative analysis (library-based fingerprinting, screening, identification, recognition). For many polymer/additive problems, the classical methods are usually sensitive enough, and sophisticated instrumental methods are available, allowing analytical chemists to probe samples for components at much lower concentration levels. [Pg.739]

A major advantage of the simple model described in this paper lies in its potential applicability to the direct evaluation of experimental data. Unfortunately, it is clear from the form of the typical isotherms, especially those for high polymers (large n) that, even with a simple model, this presents considerable difficulty. The problems can be seen clearly by consideration of some typical polymer adsorption data. Experimental isotherms for the adsorption of commercial polymer flocculants on a kaolin clay are shown in Figure 4. These data were obtained, in the usual way, by determination of residual polymer concentrations after equilibration with the solid. In general, such methods are limited at both extremes of the concentration scale. Serious errors arise at low concentration due to loss in precision of the analytical technique and at high concentration because the amount adsorbed is determined by the difference between two large numbers. [Pg.32]

A major problem with viscous fingering is that reproducible peak shapes, albeit distorted, may be observed this may be highly misleading in interpreting SEC results. To obtain reliable results, molecular weight distributions of samples should be obtained as a function of polymer concentrations to arrive at a value in which peak distortion is not present or peak shape does... [Pg.36]

Attenpts to Analyze Complex Polymers Using SEC Detector Technology. For linear copolymers, multiple detectors and, more recently, diode array UV/vis spectrophotometers have been used in attempts to overccxne the above analysis problems. The basic idea is to provide more than one detector response so that the polymer concentration and the number of properties will together equal the number of detector responses (Figure 4). This provides the same number of equations as the number of unitnowns (5,6). [Pg.62]

A simple theory of the concentration dependence of viscosity has recently been developed by using the mode coupling theory expression of viscosity [197]. The slow variables chosen are the center of mass density and the charge density. The final expressions have essentially the same form as discussed in Section X the structure factors now involve the intermolecular correlations among the polyelectrolyte rods. Numerical calculation shows that the theory can explain the plateau in the concentration dependence of the viscosity, if one takes into account the anisotropy in the motion of the rod-like polymers. The problem, however, is far from complete. We are also not aware of any study of the frequency-dependent properties. Work on this problem is under progress [198]. [Pg.213]

One of the most difficult problems when characterizing copolymers and polymer blends by SEC-viscometry is the accurate determination of the polymer concentration across the SEC elution curve. The concentration detector signal is a function of the chemical drift of the sample under investigation. To overcome this problem, Goldwasser proposed a method where no concentration detector is required for obtaining Mn data [72]. In the usual SEC-viscometry experiment, the determination of the intrinsic viscosity at each slice of the elution curve requires a viscosity and a concentration signal ... [Pg.20]

It should be pointed out that since I.G.C. measures the total free energy of the interaction, any value of the Flory-Huggins interaction parameter which is derived will be a total value including combinatorial and residual interaction parameters as well as any residual entropy contributions. Similarly when using Equation-of-state theory one will obtain Xj2 rather than Xj. The interactions are measured at high polymer concentration and are therefore of more direct relevance to interactions in the bulk state but this does not remove problems associated with the disruption of intereactions in a blend by a third component. [Pg.146]

From that point, the necessity of continuously measuring viscosity, in addition to polymer concentration, became obvious. Several attempts were made to adapt existing viscometers as GPC detectors, but the problem of internal volume was critical. Ouano [2] published the first design of a single-capillary viscometer which was based on pressure measurement. Several similar designs [3-6] were pubfished and a commercially available instrument, the Waters Model 150CV (Waters Associates, Milford, MA, U.S.A.), based on a design described in Ref. 4, became commercially available. [Pg.1714]


See other pages where Polymer concentration problem is mentioned: [Pg.4]    [Pg.4]    [Pg.454]    [Pg.66]    [Pg.338]    [Pg.168]    [Pg.10]    [Pg.260]    [Pg.642]    [Pg.102]    [Pg.68]    [Pg.59]    [Pg.275]    [Pg.220]    [Pg.221]    [Pg.225]    [Pg.195]    [Pg.610]    [Pg.296]    [Pg.454]    [Pg.293]    [Pg.122]    [Pg.181]    [Pg.68]    [Pg.31]    [Pg.329]    [Pg.198]    [Pg.81]    [Pg.470]    [Pg.278]    [Pg.77]    [Pg.334]    [Pg.296]    [Pg.329]    [Pg.194]    [Pg.1231]   
See also in sourсe #XX -- [ Pg.4 ]




SEARCH



Polymer concentration

© 2024 chempedia.info