Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer characterization electrical conductivity

The synthesis, characterization, electrical conductivity, and field effect mobility of a series of novel soluble N-alkyl dithieno[3,2-b 2, 3 -d]pyrrole (DTP) and thiophene (TH)-based copolymers (DTP-co-THs) were reported (06MM1771 08JA13167). The incorporation of DTP units extends n conjugation, and the introduction of thiophene subunits imparts good solubility, high conductivity, and high charge carrier mobility. Therefore, the incorporation of DTP units and various substituted thiophenes into the polymer backbone affords the ability to enhance the solubility, lower the band gap, and achieve the enhanced electronic properties. [Pg.329]

This chapter reviews in detail the principles and applications of heterogeneous electron transfer reaction analysis at tip and sample electrodes. The first section summarizes the basic principles and concepts. It is followed by sections dedicated to one class of sample material glassy carbon, metals and semiconductors, thin layers, ion-conducting polymers, and electrically conducting polymers. A separate section is devoted to practical applications, in essence the study of heterogeneous catalysis and in situ characterization of sensors. The final section deals with the experiments defining the state of the art in this field and the outlook for some future activities. Aspects of heterogeneous electron transfer reactions in more complex systems, such as... [Pg.202]

Chain length is another factor closely related to the structural characterization of conducting polymers. The importance of this parameter lies in its considerable influence on the electric as well as the electrochemical properties of conducting polymers. However, the molecular weight techniques normally used in polymer chemistry cannot be employed on account of the extreme insolubility of the materials. A comparison between spectroscopic findings (XPS, UPS, EES) for PPy and model calculations has led some researchers to conclude that 10 is the minimum number of monomeric units in a PPy chain, with the maximum within one order of magnitude n9- 27,i28) mechanical qualities of the electropolymerized films,... [Pg.17]

Carbon nanotubes are also of considerable interest with regard to both reinforcement and possible increases in electrical conductivity [237-239]. There is considerable interest in characterizing the flexibility of these nanotube structures, in minimizing their tendencies to aggregate, and in maximizing their miscibilities with organic and inorganic polymers. [Pg.373]

Metals are characterized by their low coefficients of thermal expansion and their strong thermal and electric conductivities, whereas wood (except where there is excessive moisture), and neat polymers have high coefficients of thermal expansion and are electrical and thermal insulators. [Pg.6]

In this context numerous changes were made. The chapter Properties of Polymers was revised and a new section Correlations of Structure and Morphology with the Properties of Polymers was added. The chapter Characterization of Macromolecules was revised and enlarged. 15 examples have been deleted as they did no longer represent the state of the art and/or were of minor educational value. Several new experiments (plus background text) were added, as, for example controlled radical polymerization - enzymatic polymerization - microemulsions - polyelectrolytes as superabsorbants - hyperbranched polymers - new blockcopolymers - high impact polystyrene - electrical conducting polymers. [Pg.389]

A very common and useful approach to studying the plasma polymerization process is the careful characterization of the polymer films produced. A specific property of the films is then measured as a function of one or more of the plasma parameters and mechanistic explanations are then derived from such a study. Some of the properties of plasma-polymerized thin films which have been measured include electrical conductivity, tunneling phenomena and photoconductivity, capacitance, optical constants, structure (IR absorption and ESCA), surface tension, free radical density (ESR), surface topography and reverse osmosis characteristics. So far relatively few of these measurements were made with the objective of determining mechanisms of plasma polymerization. The motivation in most instances was a specific application of the thin films. Considerable emphasis on correlations between mass spectroscopy in polymerizing plasmas and ESCA on polymer films with plasma polymerization mechanisms will be given later in this chapter based on recent work done in this laboratory. [Pg.13]

Table IV contains some comparative data regarding the electrical conductivity of some polychelates based on Fe3+ and Mn2+. The data dealing with electrical conductivity of polychelates, the starting polymers (for polyethylene terephthalate, Table IV contains some comparative data regarding the electrical conductivity of some polychelates based on Fe3+ and Mn2+. The data dealing with electrical conductivity of polychelates, the starting polymers (for polyethylene terephthalate, <r=1015 ohm"1cm"1), and polyethylene terephthalate milled with metallic salt but without diamine show essential differences. However, only the polychelates are characterized by electrical conductivity values and activation energies that justify placing them in the semiconducting class.
The direct synthesis by anodic oxidation of a new series of electrically conducting poljnners is described.. Our polymers derive from sulfur and/or nitrogen containing hetero-cycles such as 2-(2-thienyl)pyrrole, thiazole, indole, and phthalazine. The anodic oxidation of these monomers is carried out in acetonitrile solutions containing tetrabu-tylammonium salts (TBA X ) ith X = BF, tetraethylammonium salt, TEA H C-C H -S0. Characterization of the materials by electrical conductivity, electron spin resonance, uv-visible spectroscopy, and cyclic voltammetry is discussed. [Pg.559]

Methods of Characterization The polymers were characterized by four-probe electrical conductivity measurements between room temperature and liquid nitrogen, electron spin resonance (Varlan E-line series), scanning electron microscopy (Hitachi 520), cyclic voltammetry (Princeton Applied Research Instruments), and uv-vlsl-ble spectroscopy (Perkin Elmer 330). [Pg.561]

The electrical conductivity of aminophosphazene polymers —[NP(NHR)a]n— (R=alkyl or Ph) is related to that of semiconductors, and the characterization of a few arylaminophosphazene polymers has been imdertaken. The methylamino-derivative [NP(NHMe)2] forms square-planar platinum complexes on reaction with KgPtC. ... [Pg.233]

The application of temperature-dependent line shapes and the measurements of second moments in more complex organic solids like polymers followed soon after. Even nowadays, this simple method still has its place in the characterization of materials like solid polymer electrolytes where the line widths and Ti relaxation of the charge carriers provide information about their mobility that can be correlated with the electrical conductivity of the material. More detailed information can be obtained from cases in which the interaction is well defined, i.e., when an anisotropic single-spin interaction dominates the spectrum. Typical cases are the chemical shielding anisotropy (CSA) and quadrupolar interaction for which the theory is well developed. [Pg.165]

FIGURE 1.23 Communicating with a conducting polymer PPy/Cl in solution (a) cyclic voltammetry—a plot of current flow versus the electrical (potential) stimulus applied (b) the electrochemical quartz crystal mircobalance readout—mass polymer versus electrical (potential) stimulus applied (c) the resistometry readout—resistance of the polymer versus the electrical (potential) stimulus applied. (Printed with permission from Materials Science Forum, Vol. 189-190, Characterization of conducting polymer-solution interfacial processes using a new electrochemical method, A. Talaie, G. G. Wallace, 1995, p. 188, Trans Tech Publications, Switzerland.)... [Pg.34]


See other pages where Polymer characterization electrical conductivity is mentioned: [Pg.159]    [Pg.94]    [Pg.152]    [Pg.855]    [Pg.554]    [Pg.385]    [Pg.296]    [Pg.125]    [Pg.87]    [Pg.624]    [Pg.214]    [Pg.319]    [Pg.390]    [Pg.152]    [Pg.402]    [Pg.236]    [Pg.332]    [Pg.181]    [Pg.13]    [Pg.353]    [Pg.57]    [Pg.210]    [Pg.1020]    [Pg.287]    [Pg.5]    [Pg.7]    [Pg.4]    [Pg.171]    [Pg.271]    [Pg.363]    [Pg.1323]    [Pg.107]    [Pg.109]    [Pg.87]    [Pg.159]    [Pg.89]    [Pg.447]   
See also in sourсe #XX -- [ Pg.446 ]




SEARCH



Conducting characterization

Conducting polymers electrical conductivity

Electric characterization

Electric characterized

Electric polymers

Electrical characterization

Electrically conductive polymers

Electrically-conducting polymers

Electricity-conducting polymers

Polymer characterization

Polymers electrical

Polymers electrical conductivity

© 2024 chempedia.info