Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer adsorption density

Adsorption on Kaolinite. For kaolinite, the polymer adsorption density is strongly dependent on the solid/liquid ratio, S/L, of the clay suspension. As S/L increases, adsorption decreases. This S/L dependence cannot be due totally to autocoagulation of the clay particles since this dependence is observed even in the absence of Ca2+ at pH 7 and at low ionic strength where auto-coagulation as measured by the Bingham yield stress is relatively weak (21). Furthermore, complete dispersion of the particles in solvent by ultra-sonication before addition of... [Pg.232]

G Relative polymer adsorption density defined by Equation 8 i An integer—the number of bound segments on a given molecule K Primary adsorption constant... [Pg.36]

The effects of calcium on polymer-solvent and polymer-surface interactions are dependent on polymer ionicity a maximum intrinsic viscosity and a minimum adsorption density as a function of polymer ionicity are obtained. For xanthan, on the other hand, no influence of specific polymer-calcium interaction is detected either on solution or on adsorption properties, and the increase in adsorption due to calcium addition is mainly due to reduction in electrostatic repulsion. The maximum adsorption density of xanthan is also found to be independent of the nature of the adsorbent surface, and the value is close to that calculated for a closely-packed monolayer of aligned molecules. [Pg.227]

The adsorption of xanthan is increased by calcium but to a less extent than that for HP AM. The increased adsorption seems to be due mainly to the effects of screening of polymer and surface charges by calcium, and the maximum adsorption density is equivalent to that induced by monovalent ions. [Pg.242]

For polyacrylamides, as a function of polymer ionicity, the presence of calcium induces a maximum in intrinsic viscosity and a minimum in adsorption density on siliceous minerals. This holds important practical implications in EOR since an optimal polymer ionicity can be selected according to field conditions. [Pg.242]

The earlier models (2-5) dealt primarily with the conformation of a single molecule at an interface and apply at very low adsorption densities. More recent treatments (6-10) take into account polymer-polymer and polymer-solvent interactions and have led to the emergence of a fairly consistent picture of the adsorption process. For details of the statistical theories of polymer adsorption, the reader is referred to publications by Lipatov (11), Tadros (12) and Fleer and Scheutjens (13). [Pg.29]

The theory of polymer adsorption is complicated for most situations, because in general the free energy of adsorption is determined by contributions from each layer i where the segment density is different from that in the bulk solution. However, at the critical point the situation is much simpler since the segment density profile is essentially flat. Only the layer immedia-... [Pg.55]

PVA and TaM -for the 88%-hydrolyzed PVA. The same dependence was found for the adsorbed layer thickness measured by viscosity and photon correlation spectroscopy. Extension of the adsorption isotherms to higher concentrations gave a second rise in surface concentration, which was attributed to multilayer adsorption and incipient phase separation at the interface. The latex particle size had no effect on the adsorption density however, the thickness of the adsorbed layer increased with increasing particle size, which was attributed to changes in the configuration of the adsorbed polymer molecules. The electrolyte stability of the bare and PVA-covered particles showed that the bare particles coagulated in the primary minimum and the PVA-covered particles flocculated in the secondary minimum and the larger particles were less stable than the smaller particles. [Pg.77]

Effect of PVA Molecular Weight on Adsorbed Layer Thickness. Figure 4 shows the variation of reduced viscosity with volume fraction for the bare and PVA-covered 190nm-size PS latex particles. For the bare particles, nre(j/ is independent of and the value of the Einstein coefficient is ca. 3.0. For the covered particles, rired/ t increases linearly with tp. Table IV gives the adsorbed layer thicknesses calculated from the differences in the intercepts for the bare and covered particles and determined by photon correlation spectroscopy, as well as the root-mean-square radii of gyration of the free polymer coil in solution. The agreement of the adsorbed layer thicknesses determined by two independent methods is remarkable. The increase in adsorbed layer thickness follows the same dependence on molecular weight as the adsorption density, i.e., for the fully hydrolyzed PVA s and... [Pg.85]

In this paper we present results for a series of PEO fractions physically adsorbed on per-deutero polystyrene latex (PSL) in the plateau region of the adsorption isotherm. Hydro-dynamic and adsorption measurements have also been made on this system. Using a porous layer theory developed recently by Cohen Stuart (10) we have calculated the hydrodynamic thickness of these adsorbed polymers directly from the experimental density profiles. The results are then compared with model calculations based on density profiles obtained from the Scheutjens and Fleer (SF) layer model of polymer adsorption (11). [Pg.148]

Flocculation is indeed dependent on polymer adsorption, and there are hypotheses correlating the two phenomena, but often these have been put forth without detailed measurement of the two phenomena simultaneously (10-13). In this paper, flocculation is investigated as a function of polymer and solution properties and hydrodynamic conditions by measuring different properties of the system, including adsorption, using well characterized kaolinite and polymer samples prepared specifically for this purpose. Also, the role of concentration and charge density of polyacrylamide and polyacrylamide-polyacrylic acid co-polymers in determining kaolinite flocculation is examined under controlled hydrodynamic conditions. [Pg.394]

Flocculation was correlated with both adsorption density and estimated surface coverage for the nonionic and 33% hydrolyzed polyacrylamides. Maximum settling rate was obtained with the nonionic flocculent at 0.1 and with the hydrolyzed sample at 0.2 surface coverage. Supernatant clarity showed a maximum at a surface coverage of Na-kaolinite by the hydrolyzed polyacrylamide of 0.1. At higher surface coverages (such as 0.5) considered in the past to be optimum for flocculation, complete dispersion was obtained with both the nonionic and the anionic polymer. [Pg.408]

Adsorption and electrokinetic effects of amino acids, solid-aqueous interface, 311-26 Adsorption density, equilibrium PAA at various pH values, 299f PAA on hematite, 304f SDS with and without polymer, 298f,303f... [Pg.342]

Figure 7 shows the effect of polymer dose on the measured zeta potential. Zeta potential continues to rise quite steeply through regions 1 and 2, but then decreases rapidly in region 3. This sharp decrease could be a result of the reduction in ionisation of the polymer as the adsorption density rises however, recently published studies on tethered polyacrylate chains at various surface... [Pg.60]

Existing theories of the adsorption of polyelectrolyte allow effects of the polymer charge density, the surface charge density, and the ionic strength on the adsorption behavior to be predicted. The predicted adsorption behavior resembles that of nonionic polymers if the ionic strength is high or the polymer charge density is very low. [Pg.34]

DENSITY FUNCTIONAL THEORY OF LATTICE BASED POLYMER ADSORPTION... [Pg.176]


See other pages where Polymer adsorption density is mentioned: [Pg.266]    [Pg.266]    [Pg.34]    [Pg.565]    [Pg.377]    [Pg.232]    [Pg.232]    [Pg.234]    [Pg.237]    [Pg.237]    [Pg.240]    [Pg.25]    [Pg.35]    [Pg.87]    [Pg.442]    [Pg.300]    [Pg.80]    [Pg.5]    [Pg.39]    [Pg.57]    [Pg.46]    [Pg.25]    [Pg.177]    [Pg.166]    [Pg.21]    [Pg.171]   
See also in sourсe #XX -- [ Pg.229 ]




SEARCH



Adsorption density

Adsorption density soluble polymers

Adsorption density, equilibrium polymer

Polymer adsorption

© 2024 chempedia.info