Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyethylene terephthalate structure

Kashiwagi et al.10) determined the second moment anisotropy for the one-way drawn polyethylene terephthalate sheets discussed above. The three lattice sums S00, S2q and S4o were calculated from the crystal structure determination of Daubeny et al., the proton positions being calculated on the basis of known bond angles and lengths. The isotropic lattice sum S00 was adjusted to a value consistent with the measured isotropic second moment of 10.3G2. The values for P200, P220 etc. were then used to predict the optical anisotropy. The predicted refractive indices for the sheets of draw ratio 2 1 and 2.5 1 are shown in Fig. 10, together with the experimental... [Pg.108]

In this review recent theoretical developments which enable quantitative measures of molecular orientation in polymers to be obtained from infra-red and Raman spectroscopy and nuclear magnetic resonance have been discussed in some detail. Although this is clearly a subject of some complexity, it has been possible to show that the systematic application of these techniques to polyethylene terephthalate and polytetramethylene terephthalate can provide unique information of considerable value. This information can be used on the one hand to gain an understanding of the mechanisms of deformation, and on the other to provide a structural understanding of physical properties, especially mechanical properties. [Pg.114]

The effect of incorporating p-hydroxybenzoic acid (I) into the structures of various unsaturated polyesters synthesised from polyethylene terephthalate (PET) waste depolymerised by glycolysis at three different diethylene glycol (DEG) ratios with Mn acetate as transesterification catalyst, was studied. Copolyesters of PET modified using various I mole ratios showed excellent mechanical and chemical properties because of their liquid crystalline behaviour. The oligoesters obtained from the twelve modified unsaturated polyesters (MUP) were reacted with I and maleic anhydride, with variation of the I ratio with a view to determining the effect on mechanical... [Pg.31]

Polyesters form via a condensation reaction between a dicarboxylic acid and a dialcohol to create an ester linkage, as shown in Fig. 24.1. By far, the two most common polyesters are polyethylene terephthalate and polybutylene terephthalate, the chemical structures of which are shown in Fig. 24.2. These two polymers differ from one another by the length... [Pg.371]

Poly (ethylene Terephthalate). Polyethylene terephthalate) is prepared by the reaction of either terephthalic acid or dimethyl terephthalate with ethylene glycol, and its repeating unit has the general structure. [Pg.1288]

In 1953, E. F. Izard of du Pont was awarded the Schoellkopf Medal of the American Chemical Society. The report [36] of this award states that work on the development of a hydrolytically stable polyester was started by Dr Izard in 1944, and it led in a comparatively short time to the discovery of polyethylene terephthalate . The report recognises that polyethylene terephthalate was earlier discovered independently in England by J. R. Whinfield . Izard himself says [37] that the duPont research programme led immediately to the discovery of poly(ethylene terephthalate) (PET), which suggests that detailed information from ICI about the structure of the new fibre had not yet reached him by that time. [Pg.11]

Imai, M., Kaji, K. and Kanaya, T., Structural formation of polyethylene terephthalate) during the induction period of crystallization. 3. Evolution of density fluctuations to lamellar crystal, Macromolecules, 27, 7103-7108 (1994). [Pg.190]

Glass-filled, toughened polyethylene terephthalate) (PET) resins can be readily moulded into highly impact-resistant structural parts for appliances and automotive components. The PET-based compounds are also suitable for construction (e.g. as structural members), equipment housings (e.g. printer and copier parts), agricultural applications (e.g. mower and tractor engine covers), materials handling (e.g. pallets and trays), furniture (e.g. office chair bases), as well as electrical and electronic applications. [Pg.495]

Poro-xylene is an industrially important petrochemical. It is the precursor chemical for polyester and polyethylene terephthalate. It usually is found in mixtures containing all three isomers of xylene (ortho-, meta-, para-) as well as ethylbenzene. The isomers are very difficult to separate from each other by conventional distillation because the boiling points are very close. Certain zeoHtes or mol sieves can be used to preferentially adsorb one isomer from a mixture. Suitable desorbents exist which have boiling points much higher or lower than the xylene and displace the adsorbed species. The boihng point difference then allows easy recovery of the xylene isomer from the desorbent by distillation. Because of the basic electronic structure of the benzene ring, adsorptive separations can be used to separate the isomers of famihes of substituted aromatics as weU as substituted naphthalenes. [Pg.174]

For most step polymerizations, for example, in the synthesis of polyl hexamethylene adipa-mide) or polyethylene terephthalate), two reactants or monomers are used in the process, and the polymer obtained contains two different kinds of structures in the chain. This is not the case for chain polymerizations, where only one monomer need be used to produce a polymer. However, chain polymerizations can be carried out with mixtures of two monomers to form polymeric products wiht two different structures in the polymer chain. This type of chain polymerization process in which two monomers are simultaneously polymerized is termed a copolymerization, and the product is a copolymer. It is important to stress that the copolymer is not an alloy of two homopolymers hut contains units of both monomers incorporated into each copolymer molecule. The process can be depicted as... [Pg.464]

Chemically, Dacron and Mylar are polymers made from a ring structure called dimethyl terephthalate and ethylene glycol (HO-CH2CH2-OH). The polymer unit is called polyethylene terephthalate, or PET. Dacron fiber is used in tires and fabrics, and is even used to repair blood vessels. Mylar is used in magnetic recording tape. In the 1960s, it was used in huge balloons that were sent into orbit around Earth. Plastic soda containers are made of PET. [Pg.87]

Sometimes, small structural differences in morphology of polymer samples can be isolated by using a double subtraction technique. For example, with polyethylene terephthalate) PET, differences in the amorphous phase of the melt-quenched polymer and solution-cast polymer can be isolated by first subtracting out the contribution due to the trans isomer and then subtracting the two difference spectra from each other 214). (Fig. 16) shows the resultingdifference spectrum obtained after the second subtraction. Obviously the two amorphous structures are different from each other. [Pg.123]

Most of the polymer s characteristics stem from its molecular structure, which like POE, promotes solubility in a variety of solvents in addition to water. It exhibits Newtonian rheology and is mechanically stable relative to other thermoplastics. It also forms miscible blends with a variety of other polymers. The water solubility and hot meltable characteristics promote adhesion in a number of applications. PEOX has been observed to promote adhesion comparable with PVP and PVA on aluminum foil, cellophane, nylon, poly(methyl methacrylate), and polyethylene terephthalate), and in composite systems improved tensile strength and Izod impact properties have been noted. [Pg.320]

Diamine plays a prominent role in the complexing reaction because the polymers obtained by vibratory milling of both polyethylene terephthalate and inorganic salts with diamine do not differ essentially in their structures and properties from those of the original polymer. [Pg.112]

Fig. 21. Crystal structure of polyethylene terephthalate [Daubeny, Bunn, and Brown (45)]... Fig. 21. Crystal structure of polyethylene terephthalate [Daubeny, Bunn, and Brown (45)]...
Edgar, O. B., and E. Ellery Structure-property relationships in polyethylene terephthalate co-polyesters. Part. I. Melting points. Part II. Second-order transition temperatures, J. Chem. Soc. (London) 1952, 2633—2643 J. Polymer Sci. 8, 1—22 (1952). [Pg.269]

Other recent applications of AFM-SECM included the study of the iontophoretic transport of [Fe(CN)6]4 across a synthetic track-etched polyethylene terephthalate membrane by Gardner et al. [193]. They made the structure and flux measurements at the single pore level and found that only a fraction of candidate pore sites are active in transport. Demaille et al. used AFM-SECM technique in aqueous solutions to determine both the static and dynamical properties of nanometer-thick monolayers of poly(ethylene glycol) (PEG) chains end-grafted to a gold substrate surface [180]. [Pg.238]

A test set of 6 to 13 aroma compound partition coefficients between different food contact polymers (low density polyethylene (LDPE), high density polyethylene (HDPE) polypropylene (PP), polyethylene terephthalate (PET), polyamide (PA)) and different food simulant phases (water, ethanol, aqueous ethanol/water mixtures, methanol, 1-propanol) were taken from the literature (Koszinowski and Piringer, 1989, Baner, 1992, Franz, 1990, Koszinowski, 1986, Franz, 1991, Baner, 1993, Piringer, 1992). Table 4-2 shows the test set of 13 different aroma compounds, with their properties and their structures. The experimental data were compared to estimations using different estimation methods of UNIFAC-FV, GCFLORY (1990), GCFLORY (1994) and ELBRO-FV. [Pg.100]


See other pages where Polyethylene terephthalate structure is mentioned: [Pg.1311]    [Pg.684]    [Pg.1311]    [Pg.684]    [Pg.277]    [Pg.295]    [Pg.2]    [Pg.129]    [Pg.205]    [Pg.373]    [Pg.377]    [Pg.377]    [Pg.119]    [Pg.404]    [Pg.105]    [Pg.669]    [Pg.61]    [Pg.159]    [Pg.280]    [Pg.322]    [Pg.141]    [Pg.92]    [Pg.87]    [Pg.153]    [Pg.163]    [Pg.2227]    [Pg.114]    [Pg.70]    [Pg.164]    [Pg.207]    [Pg.140]    [Pg.629]    [Pg.729]    [Pg.321]    [Pg.85]   
See also in sourсe #XX -- [ Pg.36 ]

See also in sourсe #XX -- [ Pg.5 ]

See also in sourсe #XX -- [ Pg.8 , Pg.29 , Pg.334 ]

See also in sourсe #XX -- [ Pg.15 ]




SEARCH



Polyethylene terephthalate)

Polyethylene terephthalates)

© 2024 chempedia.info