Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyethylene/clay hydrophobic

Carboxymethylcellulose, polyethylene glycol Combination of a cellulose ether with clay Amide-modified carboxyl-containing polysaccharide Sodium aluminate and magnesium oxide Thermally stable hydroxyethylcellulose 30% ammonium or sodium thiosulfate and 20% hydroxyethylcellulose (HEC) Acrylic acid copolymer and oxyalkylene with hydrophobic group Copolymers acrylamide-acrylate and vinyl sulfonate-vinylamide Cationic polygalactomannans and anionic xanthan gum Copolymer from vinyl urethanes and acrylic acid or alkyl acrylates 2-Nitroalkyl ether-modified starch Polymer of glucuronic acid... [Pg.12]

As an inorganic mineral, most unmodified nanoadditives are strongly hydrophilic and are generally compatible and miscible only with a few hydrophilic polymers, for instance, clay can only be made into PNs with polyethylene oxide),27 poly(vinyl alcohol),28 and a few other water soluble polymers. Most polymers are hydrophobic and thus they are neither compatible nor miscible with the unmodified nanoadditives, leading to an inability to achieve a PN with a good nanodispersion in most cases. Therefore, for most nanoadditives that have been used to prepare the PNs, an important and necessary feature is their surface treatment that provides compatibility to the nanoadditives and enables them to be uniformly dispersed (and/or separated into single nanoparticles) in the polymer matrix. [Pg.266]

Recent advances in this technology include the use of 2 1 clays converted to hydrophobic forms through the introduction of surfactants in the interlayer. For example, Boyd et al. (1991) introduced cationic chain surfactants into 2 1 clay minerals. Such clays were demonstrated to have high affinity for hydrophobic organic chemicals. Additionally, polyethylene oxides (PEOs) have been intercalated into aluminum-pillared montmorillonite (Montarges et al., 1995). Because PEOs have a... [Pg.505]

There are two basic types of nanocomposites, in which particles are intercalated or exfoliated. In an intercalated composite the nanodispersed filler still consists of ordered structures of smaller individual particles, packed into intercalated structures. Exfoliated particles are those dispersed into practically individual units, randomly distributed in the composite. Layered silicates, such as montmorillonite clays or organoclays, can be used in nanocomposites. Because clays are hydrophilic and polyolefines are hydrophobic, it is not easy to make a nanocomposite based on polyethylene or polypropylene because of their natural incompatibility. [Pg.154]

Natural, unmodified montmorillonite-Na (MMT-Na) has cation exchange capacity, typically 80-90 mequiv/100 g. Although some polymers, such as polyethylene oxide or polyvinylpyrrolidone, are of sufficient polarity to be able to directly exfoliate unmodified MMT-Na, organic modification of the layered clay is usually required to render the hydrophilic surface of the clay more hydrophobic and thus more compatible with most polymers, thereby improving the wettability and dispersibility of the clay in the polymer matrix. [Pg.682]

In the case of polymer/clay nanocomposites, alkylammonium exchange species influence the affinity between the polymer and the clay surface. For example, it was reported that clays treated with dialkyl dimethylammonium halides, in particular with two chains of about 18 carbon atoms, have a surface energy similar to poly(olefins) such as polypropylene (PP) and polyethylene (PE) [27]. Polar polymers as polyamides (PA) have been recommended to get better interactions as reported by Toyota [8]. The alkyl chain length is related with increase in interlayer space required for the intercalation of polymer chains. Because of the nonpolar nature of their chains, they reduce the electrostatic interactions between the silicate layers and lower the surface energy of the layered silicates. As a consequence, an optimal diffusion of the polymer to dissociate the stacked clay layers, that is, an exfoliation process, can be obtained. Despite the compatibility of MMT modified by long alkyl chain quaternary ammonium with hydrophobic polymers (PE and PP), conventional alkylammonium ions show low thermal stability, that is, an onset decomposition temperature is close to 180°C.This poor thermal stability could limit their use in the preparation of PLS with matrices processed at high temperatures such as PA, poly(ethylene terephthalate) (PET), and poly(ether ether ketone) (PEEK) [30]. [Pg.506]


See other pages where Polyethylene/clay hydrophobic is mentioned: [Pg.426]    [Pg.247]    [Pg.1473]    [Pg.56]    [Pg.368]    [Pg.562]    [Pg.45]    [Pg.101]    [Pg.115]    [Pg.415]    [Pg.369]    [Pg.267]    [Pg.1]   
See also in sourсe #XX -- [ Pg.588 ]




SEARCH



Hydrophobic polyethylene

Polyethylene/clay

© 2024 chempedia.info