Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polycarbonate /3-transition

Polycarbonates are an unusual and extremely useful class of polymers. The vast majority of polycarbonates are based on bisphenol A [80-05-7] (BPA) and sold under the trade names Lexan (GE), Makrolon (Bayer), CaUbre (Dow), and Panlite (Idemitsu). BPA polycarbonates [25037-45-0] having glass-transition temperatures in the range of 145—155°C, are widely regarded for optical clarity and exceptional impact resistance and ductiUty at room temperature and below. Other properties, such as modulus, dielectric strength, or tensile strength are comparable to other amorphous thermoplastics at similar temperatures below their respective glass-transition temperatures, T. Whereas below their Ts most amorphous polymers are stiff and britde, polycarbonates retain their ductiUty. [Pg.278]

A reexamination of polycarbonate chemistry was carried out about 50 years after the first aromatic polycarbonates of resorcinol and hydroquinone were discovered. In independent investigations at Bayer AG and General Electric, it was discovered that the polycarbonates of BPA could be prepared (eq. 2). Unlike the ahphatic polycarbonates prepared earlier, which were either hquids or low melting sohds, the aromatic polycarbonates were amorphous sohds having elevated glass-transition temperatures. [Pg.278]

Glass-Transition Temperature and Melt Behavior. The T of BPA polycarbonate is around 150°C, which is unusually high compared... [Pg.280]

Transesterification. There has been renewed interest in the transesterification process for preparation of polycarbonate because of the desire to transition technology to environmentally friendly processes. The transesterification process utilizes no solvent during polymerization, producing neat polymer direcdy and thus chlorinated solvents may be entirely eliminated. General Electric operates a polycarbonate plant in Chiba, Japan which produces BPA polycarbonate via this melt process. [Pg.283]

Polycarbonate—polyester blends were introduced in 1980, and have steadily increased sales to a volume of about 70,000 t. This blend, which is used on exterior parts for the automotive industry, accounting for 85% of the volume, combines the toughness and impact strength of polycarbonate with the crystallinity and inherent solvent resistance of PBT, PET, and other polyesters. Although not quite miscible, polycarbonate and PBT form a fine-grained blend, which upon analysis shows the glass-transition temperature of the polycarbonate and the melting point of the polyester. [Pg.290]

FIQURE 2-6.2.3. Transition from brush discharge to PBD on 80-/.m polycarbonate film. [Pg.29]

In the case of a crystalline polymer the maximum service temperature will be largely dependent on the crystalline melting point. When the polymer possesses a low degree of crystallinity the glass transition temperature will remain of paramount importance. This is the case with unplasticised PVC and the polycarbonate of bis-phenol A. [Pg.73]

When dipoles are directly attached to the chain their movement will obviously depend on the ability of chain segments to move. Thus the dipole polarisation effect will be much less below the glass transition temperature, than above it Figure 6.4). For this reason unplasticised PVC, poly(ethylene terephthalate) and the bis-phenol A polycarbonates are better high-frequency insulators at room temperature, which is below the glass temperature of each of these polymers, than would be expected in polymers of similar polarity but with the polar groups in the side chains. [Pg.114]

By the use of a polymer which has effective transitions at or below the expected service temperature range and which is able to respond to stress by extensive deformation (e.g. polycarbonates). [Pg.191]

Polymers below the glass transition temperature are usually rather brittle unless modified by fibre reinforcement or by addition of rubbery additives. In some polymers where there is a small degree of crystallisation it appears that the crystallines act as knots and toughen up the mass of material, as in the case of the polycarbonates. Where, however, there are large spherulite structures this effect is more or less offset by high strains set up at the spherulite boundaries and as in the case of P4MP1 the product is rather brittle. [Pg.271]

The TMC polycarbonate homopolymer has a glass transition temperature of 238°C, nearly 100°C above that of the bis-phenol A polycarbonate. Therefore, copolymers will have intermediate glass transitions depending on the relative proportions of TMC and bis-phenol A. Commercial grades (marketed by Bayer as Apec HT) have Vicat softening points from 158 to... [Pg.565]

Introduction of aromatic or cycloaliphatic groups at R and/or Rj gives further restriction to chain flexibility and the resulting polymers have transition temperatures markedly higher than that of the bis-phenol A polycarbonate. [Pg.581]

The melting ranges and glass transition temperatures of a number of polycarbonates from di-(4-hydroxyphenyl)methane derivatives are given in Table 20.10. [Pg.581]

Christopher and Fox have given examples of the way in which polycarbonate resins may be tailor-made to suit specific requirements. Whereas the bis-phenol from o-cresol and acetone (bis-phenol C) yields a polymer of high hydrolytic stability and low transition temperature, the polymer from phenol and cyclohexanone has average hydrolytic stability but a high heat distortion temperature. By using a condensate of o-cresol and cyclohexanone a polymer may be obtained with both hydrolytic stability and a high heat distortion temperature. [Pg.582]

Polycarbonate is perhaps the most notoriously notch-sensitive of all thermoplastics, although nylons arc also susceptible to ductileAjrittle transitions in failure behaviour caused by notch sharpening. Other plastics such as acrylic, polystyrene and thermosets are always brittle - whatever the crack condition. [Pg.132]


See other pages where Polycarbonate /3-transition is mentioned: [Pg.2534]    [Pg.693]    [Pg.778]    [Pg.783]    [Pg.784]    [Pg.794]    [Pg.539]    [Pg.155]    [Pg.151]    [Pg.279]    [Pg.279]    [Pg.280]    [Pg.280]    [Pg.281]    [Pg.286]    [Pg.289]    [Pg.468]    [Pg.29]    [Pg.39]    [Pg.47]    [Pg.62]    [Pg.562]    [Pg.562]    [Pg.569]    [Pg.571]    [Pg.581]    [Pg.591]    [Pg.1220]    [Pg.23]    [Pg.25]    [Pg.5]    [Pg.10]    [Pg.263]    [Pg.140]   
See also in sourсe #XX -- [ Pg.451 ]




SEARCH



Bis-phenol A polycarbonates glass transition temperature

Polycarbonate glass transition temperature

© 2024 chempedia.info