Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyamides mechanical

The various mechanical properties of polyamides may be traced in many instances to the possibility of intermolecular hydrogen bonding between the polymer molecules and to the relatively stiff chains these substances possess. The latter, in turn, may be understood by considering still another equilibrium, this one among resonance structures along the chain backbone ... [Pg.308]

Because of the rotation of the N—N bond, X-500 is considerably more flexible than the polyamides discussed above. A higher polymer volume fraction is required for an anisotropic phase to appear. In solution, the X-500 polymer is not anisotropic at rest but becomes so when sheared. The characteristic viscosity anomaly which occurs at the onset of Hquid crystal formation appears only at higher shear rates for X-500. The critical volume fraction ( ) shifts to lower polymer concentrations under conditions of greater shear (32). The mechanical orientation that is necessary for Hquid crystal formation must occur during the spinning process which enhances the alignment of the macromolecules. [Pg.202]

Commonly used materials for cable insulation are poly(vinyl chloride) (PVC) compounds, polyamides, polyethylenes, polypropylenes, polyurethanes, and fluoropolymers. PVC compounds possess high dielectric and mechanical strength, flexibiUty, and resistance to flame, water, and abrasion. Polyethylene and polypropylene are used for high speed appHcations that require a low dielectric constant and low loss tangent. At low temperatures, these materials are stiff but bendable without breaking. They are also resistant to moisture, chemical attack, heat, and abrasion. Table 14 gives the mechanical and electrical properties of materials used for cable insulation. [Pg.534]

Grafting can also occur in the amide nitrogen, either through an anionic-type mechanism which is beheved to operate when ethylene oxide [75-21 -8] and similar copolymers are grafted to polyamides, or through a polycondensation mechanism when secondary amides are formed as graft copolymers (70). [Pg.226]

The mechanism for photodegradation at short wavelengths is generaUy beUeved to be initiated by the photolytic cleavage of the amide bond (eq. 17), which has the lowest bond strength in aUphatic polyamides (220 kj/mol (53 kcal/mol))... [Pg.229]

Polyamides, like other macromolecules, degrade as a result of mechanical stress either in the melt phase, in solution, or in the soHd state (124). Degradation in the fluid state is usually detected via a change in viscosity or molecular weight distribution (125). However, in the soHd state it is possible to observe the free radicals formed as a result of polymer chains breaking under the appHed stress. If the polymer is protected from oxygen, then alkyl radicals can be observed (126). However, if the sample is exposed to air then the radicals react with oxygen in a manner similar to thermo- and photooxidation. These reactions lead to the formation of microcracks, embrittlement, and fracture, which can eventually result in failure of the fiber, film, or plastic article. [Pg.230]

Polyamides can claim to have been the first engineering plastics as a result of their excellent combination of mechanical and thermal properties. Despite being iatroduced as long ago as the 1930s, these materials have retained their vitaUty and new appHcations, and iadeed new types of nylon continue to be developed. [Pg.266]

An all aromatic polyetherimide is made by Du Pont from reaction of pyromelUtic dianhydride and 4,4 -oxydianiline and is sold as Kapton. It possesses excellent thermal stabiUty, mechanical characteristics, and electrical properties, as indicated in Table 3. The high heat-deflection temperature of the resin limits its processibiUty. Kapton is available as general-purpose film and used in appHcations such as washers and gaskets. Often the resin is not used directly rather, the more tractable polyamide acid intermediate is appHed in solution to a surface and then is thermally imidi2ed as the solvent evaporates. [Pg.333]

Nylon. Nylons comprise a large family of polyamides with a variety of chemical compositions (234,286,287). They have excellent mechanical properties, as well as abrasion and chemical resistance. However, because of the need for improved performance, many commercial nylon resins are modified by additives so as to improve toughness, heat fabrication, stabiUty, flame retardancy, and other properties. [Pg.421]

Similady, hquid-crystal polymers exhibit considerable order in the hquid state, either in solution (lyotropic) or melt (thermotropic). When crystallized from solution or melt, they have a high degree of extended-chain crystallinity, and thus have superior mechanical properties. Kevlar (Du Pont) is an aromatic polyamide (atamid) with the repeating unit designated as (2). It is spun into... [Pg.433]

Aramid Fibers. Aromatic polyamide fibers exhibiting a range of mechanical properties are available from several manufacturers, perhaps the best known being Du Pont s proprietary fiber Kevlar. These fibers possess many unique properties, such as high specific tensile strength and modulus (see Fig. 4). Aramid fibers have good chemical resistance to water, hydrocarbons, and solvents. They also show excellent flame retardant characteristics (see High PERFORMANCE fibers Polyamdes). [Pg.6]

It may be noted that in this area the newly introduced nylon 46 has become of interest in auto automatic gears, gearboxes, engine differentials and the clutch area because of its exceptional ability (for a polyamide) to withstand severe mechanical and thermal loading. ... [Pg.503]

Where plastics are to be used for electrical applications, then electrical properties as well as mechanical and other properties need to be considered. Whilst properties such as resistivity, power factor and dielectric constant are important, they may not be all-important. For example, although polyamides and many thermosetting plastics may show only moderate values for the above properties, they have frequently been used successfully in low-frequency applications. Perhaps more important for many purposes are the tracking and arcing resistance, which are frequently poor with aromatic polymers. [Pg.897]

The model has also been found to work well in describing the mechanics of the interface between the semicrystalline polymers polyamide 6 and polypropylene coupled by the in-situ formation of a diblock copolymer at the interface. The toughness in this system was found to vary as E- where E was measured after the sample was fractured (see Fig. 8). The model probably applied to this system because the failure occurred by the formation and breakdown of a primary craze in the polypropylene [14],... [Pg.231]


See other pages where Polyamides mechanical is mentioned: [Pg.75]    [Pg.75]    [Pg.38]    [Pg.56]    [Pg.293]    [Pg.388]    [Pg.329]    [Pg.17]    [Pg.220]    [Pg.220]    [Pg.226]    [Pg.228]    [Pg.229]    [Pg.229]    [Pg.230]    [Pg.240]    [Pg.535]    [Pg.144]    [Pg.150]    [Pg.248]    [Pg.286]    [Pg.295]    [Pg.337]    [Pg.86]    [Pg.35]    [Pg.265]    [Pg.373]    [Pg.409]    [Pg.20]    [Pg.261]    [Pg.264]    [Pg.265]    [Pg.275]    [Pg.367]    [Pg.488]    [Pg.491]    [Pg.404]   
See also in sourсe #XX -- [ Pg.3 , Pg.3 , Pg.3 , Pg.3 , Pg.4 , Pg.4 , Pg.4 , Pg.5 , Pg.5 , Pg.5 , Pg.6 , Pg.6 , Pg.6 , Pg.7 , Pg.7 , Pg.7 , Pg.8 , Pg.8 , Pg.8 , Pg.9 , Pg.9 , Pg.9 , Pg.10 , Pg.10 , Pg.10 , Pg.11 , Pg.11 , Pg.12 , Pg.12 , Pg.13 , Pg.13 , Pg.14 , Pg.14 , Pg.15 ]




SEARCH



Aliphatic polyamides degradation mechanisms

Aromatic polyamides degradation mechanisms

Mechanical Performance of Polyamide-Based Composites

Mechanical Properties of Polyamides

Polyamide mechanical properties

Polyamide-imide mechanical properties

Polyamides mechanical degradation

Polyamides reaction mechanisms

© 2024 chempedia.info