Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyamide performance

In 1954 the surface fluorination of polyethylene sheets by using a soHd CO2 cooled heat sink was patented (44). Later patents covered the fluorination of PVC (45) and polyethylene bottles (46). Studies of surface fluorination of polymer films have been reported (47). The fluorination of polyethylene powder was described (48) as a fiery intense reaction, which was finally controlled by dilution with an inert gas at reduced pressures. Direct fluorination of polymers was achieved in 1970 (8,49). More recently, surface fluorinations of poly(vinyl fluoride), polycarbonates, polystyrene, and poly(methyl methacrylate), and the surface fluorination of containers have been described (50,51). Partially fluorinated poly(ethylene terephthalate) and polyamides such as nylon have excellent soil release properties as well as high wettabiUty (52,53). The most advanced direct fluorination technology in the area of single-compound synthesis and synthesis of high performance fluids is currently practiced by 3M Co. of St. Paul, Minnesota, and by Exfluor Research Corp. of Austin, Texas. [Pg.278]

Carboxyhc acids react with aryl isocyanates, at elevated temperatures to yield anhydrides. The anhydrides subsequently evolve carbon dioxide to yield amines at elevated temperatures (70—72). The aromatic amines are further converted into amides by reaction with excess anhydride. Ortho diacids, such as phthahc acid [88-99-3J, react with aryl isocyanates to yield the corresponding A/-aryl phthalimides (73). Reactions with carboxyhc acids are irreversible and commercially used to prepare polyamides and polyimides, two classes of high performance polymers for high temperature appHcations where chemical resistance is important. Base catalysis is recommended to reduce the formation of substituted urea by-products (74). [Pg.452]

Applications. The polyamides have important appHcations. The very high degree of polymer orientation that is achieved when Hquid crystalline solutions are extmded imparts exceptionally high strengths and moduli to polyamide fibers and films. Du Pont markets such polymers, eg, Kevlar, and Monsanto has a similar product, eg, X-500, which consists of polyamide and hydra2ide-type polymers (31) (see High performance fibers Polyamides, fibers). [Pg.202]

Acrylic ESTER POLYMERS Acrylonitrile POLYMERS Cellulose esters). Engineering plastics (qv) such as acetal resins (qv), polyamides (qv), polycarbonate (qv), polyesters (qv), and poly(phenylene sulfide), and advanced materials such as Hquid crystal polymers, polysulfone, and polyetheretherketone are used in high performance appHcations they are processed at higher temperatures than their commodity counterparts (see Polymers containing sulfur). [Pg.136]

The two polymers appear to be well balanced, and future competitive pressure will almost assuredly come not from each other, but rather from other polyamides and, even more likely, from other polymers, such as low cost polyolefins and polyesters or high performance engineering resins. [Pg.235]

The polymerisation process proceeds in a manner similar to that of other type AABB polyamides, such as nylon-6,6. The final resin had found apphcation in automotive and other high performance end uses but was withdrawn from the market in 1994. [Pg.236]

Nylon. Nylons comprise a large family of polyamides with a variety of chemical compositions (234,286,287). They have excellent mechanical properties, as well as abrasion and chemical resistance. However, because of the need for improved performance, many commercial nylon resins are modified by additives so as to improve toughness, heat fabrication, stabiUty, flame retardancy, and other properties. [Pg.421]

Dimethylnaphthalene [581-42-0] (2,6-DMN) can be a precursor for 2,6-naphthalenedicarboxyHc acid [1141-38-4] which is a starting material for high performance polyesters or polyamides. [Pg.53]

Cycloahphatic diamines which have reacted with diacids to form polyamides generate performance polymers whose physical properties are dependent on the diamine geometric isomers. (58,74). Proprietary transparent thermoplastic polyadipamides have been optimized by selecting the proper mixtures of PDCHA geometric isomers (32—34) for incorporation (75) ... [Pg.212]

The polyamide copolymer of dodecanoic acid with methylenedi(cyclohexylamine) (MDCHA, PACM) was sold as continuous filament yam fiber under the tradename QIANA. As late as 1981, over 145,000 t was produced using high percentages, typically 80%, of trans, trans MDCHA isomer. The low melting raffinate coproduct left after t,t isomer separation by fractional crystallisation was phosgenated to produce a Hquid aUphatic diisocyanate marketed by Du Pont as Hylene W. Upon terrnination of their QIANA commitment, Du Pont sold the urethane intermediate product rights to Mobay, who now markets the 20% trans, trans—50% cis, trans—30% cis, cis diisocyanate isomer mixture as Desmodur W. In addition to its use in polyamides and as an isocyanate precursor, methylenedi (cyclohexyl amine) is used directiy as an epoxy curative. The Hquid diamine mixture identified historically as PACM-20 is marketed as AMICURE PACM by Anchor Chemical for performance epoxies. [Pg.213]

Both m- and -phenylenediamine react with ben2enedicarbonyl dichlorides to give linear, fully aromatic polyamides (see High performance fibers). [Pg.255]

Aramid Fibers. Aromatic polyamide fibers exhibiting a range of mechanical properties are available from several manufacturers, perhaps the best known being Du Pont s proprietary fiber Kevlar. These fibers possess many unique properties, such as high specific tensile strength and modulus (see Fig. 4). Aramid fibers have good chemical resistance to water, hydrocarbons, and solvents. They also show excellent flame retardant characteristics (see High PERFORMANCE fibers Polyamdes). [Pg.6]

Polyamide Resins. Another class of polyamide resins, in addition to the Hquid resins used as epoxy hardeners, are the thermoplastic type, prepared generaHy by the condensation reaction of polyamines with polybasic fatty acids. These resins find use in certain hot-melt adhesives, coatings, and inks. Diamines, typicaHy EDA (233), are the principal amine reactant however, tri- and tetramines are sometimes used at low levels to achieve specific performance. [Pg.47]

Thermoplastic polyamides are used in coatings to modify alkyd resins (qv) in thixotropic systems (238) and to plasticize nitroceUulose lacquers (239). DETA-taH oil fatty acid-based polyamides are suggested for use as corrosion inhibitors in alkyd paints (240). Printing inks for fiexo-gravure appHcation on certain paper, film and foil webs rely on EDA- and PDA-based polyamides for their specific performance (241). [Pg.47]

The most important coating appHcation for the nonreactive polyamide resins is in producing thixotropy. Typical coating resins such as alkyds, modified alkyds, natural and synthetic ester oils, varnishes, and natural vegetable oils can be made thixotropic by the addition of dimer acid-based polyamide resins (see Alkyd resins). Specialty high performance coating appHcations often requite the properties imparted by dimer acid components. [Pg.117]

Among these dye classes, anthraquiaone dyes are ia an important position ia reactive dyes and vat dyes for cellulose fibers, disperse dyes for polyester, and acid dyes for polyamide. Application for high performance organic pigments for plastics and paints are also important areas. [Pg.343]

The polyetherimides are competitive not only with other high-performance polymers such as the polysulphones and polyketones but also with polyphenylene sulphides, polyarylates, polyamide-imides and the polycarbonates. [Pg.525]

Two common types of membrane materials used are cellulose acetate and aromatic polyamide membranes. Cellulose acetate membrane performance is particularly susceptible to annealing temperature, with lower flux and higher rejection rates at higher temperatures. Such membranes are prone to hydrolysis at extreme pH, are subject to compaction at operating pressures, and are sensitive to free chlorine above 1.0 ppm. These membranes generally have a useful life of 2 to 3 years. Aromatic polyamide membranes are prone to compaction. These fibers are more resistant to hydrolysis than are cellulose acetate membranes. [Pg.330]

Note The dipping solution can also be sprayed on. The detection of the aromatic acids is best performed on cellulose layers, if ammonia-containing mobile phases have been employed. The reagent can also be employed on silica gel, aluminium oxide, RP 18 and polyamide layers. [Pg.308]

This particular reaction is performed on an industrial scale e-caprolactam 7 is used as monomer for polymerization to a polyamide for the production of synthetic fibers. [Pg.32]


See other pages where Polyamide performance is mentioned: [Pg.37]    [Pg.37]    [Pg.139]    [Pg.264]    [Pg.373]    [Pg.72]    [Pg.73]    [Pg.20]    [Pg.20]    [Pg.309]    [Pg.220]    [Pg.223]    [Pg.226]    [Pg.226]    [Pg.235]    [Pg.239]    [Pg.246]    [Pg.467]    [Pg.253]    [Pg.192]    [Pg.531]    [Pg.367]    [Pg.463]    [Pg.47]    [Pg.117]    [Pg.263]    [Pg.364]    [Pg.384]    [Pg.516]    [Pg.349]    [Pg.404]   
See also in sourсe #XX -- [ Pg.89 , Pg.90 ]




SEARCH



High performance fibers aromatic polyamide fiber

High-Performance Processable Aromatic Polyamides

Mechanical Performance of Polyamide-Based Composites

Polyphthalamide high-performance polyamide

© 2024 chempedia.info