Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyacrylate properties

R.C. Khngender, Polyacrylate Properties and Uses, Fort Wayne Rubber Plastics Group, April 20, 1989. [Pg.191]

Synthetic Rubbers. Synthetic rubbers are polymers with rubberlike characteristics that are prepared from dienes or olefins. Rubbers with special properties can also be prepared from other polymers, such as polyacrylates, fiuorinated hydrocarbons, and polyurethanes. [Pg.1007]

Finally, a modification has been carried out in which a polyacrylate emulsion is added to a normal tetrakis(hydroxymethyl)phosphonium sulfate [55566-30-8] (THPS), urea, and TMM fire-retardant treatment in an attempt to completely alleviate the strength loss during the finishing. Indeed, better retention of tensile properties is achieved with no loss in fire resistance (85). [Pg.489]

Table 3. Comparison of Mechanical Properties of Polyacrylate and Methyl Methacrylate ... Table 3. Comparison of Mechanical Properties of Polyacrylate and Methyl Methacrylate ...
Other. A large variety of additives are used in paper-coatiag colors primarily to modify the physical properties of the colors (102). At high soHds concentrations in water, mineral pigment particles tend to associate and form viscous pastes. Dispersants (qv) are used to prevent this and to provide low viscosity slurries. Common dispersants include polyphosphates and sodium polyacrylate [9003-04-7]. Various water-soluble polymers are added to coatiag colors and act as water-retention agents and as rheology modifiers. [Pg.22]

Ozonc-rcsjstant elastomers which have no unsaturation are an exceUent choice when their physical properties suit the appHcation, for example, polyacrylates, polysulfides, siHcones, polyesters, and chlorosulfonated polyethylene (38). Such polymers are also used where high ozone concentrations are encountered. Elastomers with pendant, but not backbone, unsaturation are likewise ozone-resistant. Elastomers of this type are the ethylene—propylene—diene (EPDM) mbbers, which possess a weathering resistance that is not dependent on environmentally sensitive stabilizers. Other elastomers, such as butyl mbber (HR) with low double-bond content, are fairly resistant to ozone. As unsaturation increases, ozone resistance decreases. Chloroprene mbber (CR) is also quite ozone-resistant. [Pg.238]

Standard-grade PSAs are usually made from styrene-butadiene rubber (SBR), natural rubber, or blends thereof in solution. In addition to rubbers, polyacrylates, polymethylacrylates, polyfvinyl ethers), polychloroprene, and polyisobutenes are often components of the system ([198], pp. 25-39). These are often modified with phenolic resins, or resins based on rosin esters, coumarones, or hydrocarbons. Phenolic resins improve temperature resistance, solvent resistance, and cohesive strength of PSA ([196], pp. 276-278). Antioxidants and tackifiers are also essential components. Sometimes the tackifier will be a lower molecular weight component of the high polymer system. The phenolic resins may be standard resoles, alkyl phenolics, or terpene-phenolic systems ([198], pp. 25-39 and 80-81). Pressure-sensitive dispersions are normally comprised of special acrylic ester copolymers with resin modifiers. The high polymer base used determines adhesive and cohesive properties of the PSA. [Pg.933]

For the most part, it is the provision of specific functional groups into certain positions on a backbone molecule, and its subsequent polymerization to form chains of particular molecular weight ranges, that gives the novel chemistry co- and terpolymers their beneficial and sometimes unique properties. Polyacrylates are commonly employed as backbone molecules. [Pg.447]

The most common backbone structure found in commercial polymers is the saturated carbon-carbon structure. Polymers with saturated carbon-carbon backbones, such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyacrylates, are produced using chain-growth polymerizations. The saturated carbon-carbon backbone of polyethylene with no side groups is a relatively flexible polymer chain. The glass transition temperature is low at -20°C for high-density polyethylene. Side groups on the carbon-carbon backbone influence thermal transitions, solubility, and other polymer properties. [Pg.4]

Mechanical Properties of Thermoplastic Elastomers Based on Acrylate Rubber-Fluorocarbon Rubber-Polyacrylate Monomer... [Pg.112]

For the characterization of Langmuir films, Fulda and coworkers [75-77] used anionic and cationic core-shell particles prepared by emulsifier-free emulsion polymerization. These particles have several advantages over those used in early publications First, the particles do not contain any stabihzer or emulsifier, which is eventually desorbed upon spreading and disturbs the formation of a particle monolayer at the air-water interface. Second, the preparation is a one-step process leading directly to monodisperse particles 0.2-0.5 jim in diameter. Third, the nature of the shell can be easily varied by using different hydrophilic comonomers. In Table 1, the particles and their characteristic properties are hsted. Most of the studies were carried out using anionic particles with polystyrene as core material and polyacrylic acid in the shell. [Pg.218]

Huizenga, J. R., Grieger, P. F. Wall, F. T. (1950a). Electrolytic properties of aqueous solutions of polyacrylic add and sodium hydroxide. I. Transference experiments using radioactive sodium. Journal of the American Chemical Society, 72, 2636-42. [Pg.87]

Powers, J. M., Johnson, Z. G. Craig, R. G. (1974). Physical and mechanical properties of zinc polyacrylate dental cements. Journal of the American Dental Association, 88, 380-3. [Pg.190]

Beneficial Micro Reactor Properties for Polyacrylate Formation... [Pg.502]

P Stjarnkvist, I Sjoholm, T Laasko. Biodegradable microspheres. XII. Properties of the crosslinking chains in polyacryl starch microparticles. J Pharm Sci 78 52-56, 1989. [Pg.557]

Synthetic products, e.g., polyethylene oxides(104), polyacrylates, polyacrylamides, and polyetherglycols were in competition with natural polymers like starch, guar, cellulose derivatives, alignates, carrageenan, and locust bean gum. The basic physical and structural properties of the various polysaccharide thickeners have been compiled and reviewed by numerous authors and editors(105-109). [Pg.73]

These enhance the appearance of the polymer, but play no role in the chemical, physical or mechanical properties of the base polymer. The main difficulty is that if the finished assembled article is made from different grades of the same polymer or from different polymers, then, particularly with different polymers, the combination must be uniform. For example, bathroom suites are often made from different materials, e.g., ceramics, baths (polyacrylates), trimmings (PVC, PP). The colorants therefore have to undergo different processing conditions and it is essential that in the final products the colour is the same. [Pg.115]

Flocculation is indeed dependent on polymer adsorption, and there are hypotheses correlating the two phenomena, but often these have been put forth without detailed measurement of the two phenomena simultaneously (10-13). In this paper, flocculation is investigated as a function of polymer and solution properties and hydrodynamic conditions by measuring different properties of the system, including adsorption, using well characterized kaolinite and polymer samples prepared specifically for this purpose. Also, the role of concentration and charge density of polyacrylamide and polyacrylamide-polyacrylic acid co-polymers in determining kaolinite flocculation is examined under controlled hydrodynamic conditions. [Pg.394]


See other pages where Polyacrylate properties is mentioned: [Pg.170]    [Pg.268]    [Pg.233]    [Pg.528]    [Pg.529]    [Pg.48]    [Pg.151]    [Pg.278]    [Pg.508]    [Pg.611]    [Pg.369]    [Pg.107]    [Pg.201]    [Pg.866]    [Pg.48]    [Pg.301]    [Pg.577]    [Pg.132]    [Pg.97]    [Pg.191]    [Pg.16]    [Pg.127]    [Pg.188]    [Pg.69]    [Pg.723]    [Pg.671]   
See also in sourсe #XX -- [ Pg.10 , Pg.64 ]




SEARCH



Beneficial Micro Reactor Properties for Polyacrylate Formation

Dilute Solution Properties of Sodium Polyacrylate

Fluorinated polyacrylates structure-property relationships

Polyacrylate

Polyacrylate elastomers properties

Polyacrylate physical properties

Polyacrylates

Polyacrylic

Polyacrylics

Polyacrylics properties

Polyacrylics properties

Resin properties polyacrylates

© 2024 chempedia.info