Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly thin film

When we consider silicon films, on the other hand, the nature of the solid deposit is crucial to the behavior of the film. Depending on deposition conditions, we can deposit amorphous, polycrystalline, or single crystal films. As was noted in Chapter 1, the morphology of polycrystalline films can be complex. In the present section, we will review some aspects of polysilicon (poly) thin films deposited by CVD. The final section of this chapter will be devoted to epitaxial silicon thin films. [Pg.77]

The main application today for poly(vinyl carbazole) arises out of its photoconductivity and is in electrostatic dry copying machines. The polymer is applied from solution in thin film (10-15 p.m) layers onto a conductive substrate. [Pg.473]

Figure 12.30 Potential uses of polyphosphazenes (a) A thin film of a poly(aminophosphazene) sueh materials are of interest for biomedical applications, (b) Fibres of poly[bis(trifluoroethoxy)phosphazene] these fibres are water-repellant, resistant to hydrolysis or strong sunlight, and do not burn, (c) Cotton cloth treated with a poly(fluoroalkoxyphosphazene) showing the water repellaney eonferred by the phosphazene. (d) Polyphosphazene elastomers are now being manufaetured for use in fuel lines, gaskets, O-rings, shock absorbers, and carburettor eomponents they are impervious to oils and fuels, do not bum, and remain flexible at very low temperatures. Photographs by eourtesy of H. R. Allcock (Pennsylvania State University) and the Firestone Tire and Rubber Company. Figure 12.30 Potential uses of polyphosphazenes (a) A thin film of a poly(aminophosphazene) sueh materials are of interest for biomedical applications, (b) Fibres of poly[bis(trifluoroethoxy)phosphazene] these fibres are water-repellant, resistant to hydrolysis or strong sunlight, and do not burn, (c) Cotton cloth treated with a poly(fluoroalkoxyphosphazene) showing the water repellaney eonferred by the phosphazene. (d) Polyphosphazene elastomers are now being manufaetured for use in fuel lines, gaskets, O-rings, shock absorbers, and carburettor eomponents they are impervious to oils and fuels, do not bum, and remain flexible at very low temperatures. Photographs by eourtesy of H. R. Allcock (Pennsylvania State University) and the Firestone Tire and Rubber Company.
As an indication of the changes in deformation modes that can be produced in ionomers by increase of ion content, consider poly(styrene-co-sodium methacrylate). In ionomers of low ion content, the only observed deformation mode in strained thin films cast from tetra hydrofuran (THF), a nonpolar solvent, is localized crazing. But for ion contents near to or above the critical value of about 6 mol%, both crazing and shear deformation bands have been observed. This is demonstrated in the transmission electron microscope (TEM) scan of Fig. 3 for an ionomer of 8.2 mol% ion content. Somewhat similar deformation patterns have also been observed in a Na-SPS ionomer having an ion content of 7.5 mol%. Clearly, in both of these ionomers, the presence of a... [Pg.146]

Figure 3 TEM micrograph of a deformed thin film of an 8.2 mol% poly(styrene-co-sodium methacrylate) ionomer cast from THE. Figure 3 TEM micrograph of a deformed thin film of an 8.2 mol% poly(styrene-co-sodium methacrylate) ionomer cast from THE.
The PL spectrum and onset of the absorption spectrum of poly(2,5-dioctyloxy-para-phenylene vinylene) (DOO-PPV) are shown in Figure 7-8b. The PL spectrum exhibits several phonon replica at 1.8, 1.98, and 2.15 eV. The PL spectrum is not corrected for the system spectral response or self-absorption. These corrections would affect the relative intensities of the peaks, but not their positions. The highest energy peak is taken as the zero-phonon (0-0) transition and the two lower peaks correspond to one- and two-phonon transitions (1-0 and 2-0, respectively). The 2-0 transition is significantly broader than the 0-0 transition. This could be explained by the existence of several unresolved phonon modes which couple to electronic transitions. In this section we concentrate on films and dilute solutions of DOO-PPV, though similar measurements have been carried out on MEH-PPV [23]. Fresh DOO-PPV thin films were cast from chloroform solutions of 5% molar concentration onto quartz substrates the films were kept under constant vacuum. [Pg.115]

The substituted five-ring OPVs have been processed into poly crystal line thin films by vacuum deposition onto a substrate from the vapor phase. Optical absorption and photolumincscence of the films are significantly different from dilute solution spectra, which indicates that intermolecular interactions play an important role in the solid-state spectra. The molecular orientation and crystal domain size can be increased by thermal annealing of the films. This control of the microstruc-ture is essential for the use of such films in photonic devices. [Pg.629]

With diblock copolymers, similar behavior is also observed. One component is enriched at the surface and depending on miscibility and composition a surface-induced ordered lamellar structure normal to the surface may be formed. Recent investigations include poly (urethanes) [111], poly(methoxy poly (ethyleneglycol) methacrylate)/PS [112] and PS/PMMA [113, 114]. In particular the last case has been extensively studied by various techniques including XPS, SIMS, NR and optical interferometry. PS is enriched at the surface depending on blockcopolymer composition and temperature. A well ordered lamellar structure normal to the surface is found under favourable conditions. Another example is shown in Fig. 6 where the enrichment of poly(paramethylstyrene), PMS(H), in a thin film of a di-... [Pg.381]

Fig. 6. Hydrogen depth profile of a thin film of poly(p-methylstyrene)(H)/ PS(D) diblock copolymer, PMS(H)-b-PS(D), on a silicon wafer as obtained by the l5N-NRA technique [57]. The sample has been annealed for 1 h at 140 °C. PMS(H) is largely enriched at the surface. The solid line is a guide to the eye... Fig. 6. Hydrogen depth profile of a thin film of poly(p-methylstyrene)(H)/ PS(D) diblock copolymer, PMS(H)-b-PS(D), on a silicon wafer as obtained by the l5N-NRA technique [57]. The sample has been annealed for 1 h at 140 °C. PMS(H) is largely enriched at the surface. The solid line is a guide to the eye...
Bowden and Thompson83 studied the degradation of thin films of various poly(olefin sulfone)s of low olefins due to radiolysis by electron beams at 20 °C. All samples decreased in thickness, indicating scission and depropagation. [Pg.921]

In order to improve the tribological properties of molecular films, molecular surface modification is the first choice to make an approach. A Diblock polymer polystyrene-poly(ethylene)oxide (PS-PEO) thin-films were studied in our previous research because of its interesting structure (one... [Pg.194]

The synthesis of thin films of organic conducting polymers on a nanometer scale is one of the challenges of nanotechnology. Electrochemical poly-... [Pg.32]

Characteristics of Tin Oxide Thin Films on a Poly Ethylene Terephthalate Substrate Prepared by Electron Cyclotron Resonance-Metal Organic Chemical Vapor Deposition... [Pg.385]

Aoki, H., Morita, S., Sekine, R. and Ito, S. (2008) Conformation of single poly(methyl methacrylate) chains in ultra-thin film studied by scanning near-field optical microscopy. Polym. J 40, 274-280. [Pg.69]

Gong, Y., Huang, H., Hu, Z., Chen, Y, Chen, D Wang, Z. and He, X. (2006) Inverted to normal phase transition in solution-cast polystyrene-poly(methyl methacrylate) block copolymer thin films. Macromolecules, 39, 3369-3376. [Pg.223]


See other pages where Poly thin film is mentioned: [Pg.541]    [Pg.241]    [Pg.378]    [Pg.361]    [Pg.152]    [Pg.225]    [Pg.260]    [Pg.31]    [Pg.36]    [Pg.252]    [Pg.342]    [Pg.344]    [Pg.493]    [Pg.525]    [Pg.499]    [Pg.361]    [Pg.559]    [Pg.891]    [Pg.71]    [Pg.67]    [Pg.57]    [Pg.69]    [Pg.89]    [Pg.55]    [Pg.215]    [Pg.194]    [Pg.155]    [Pg.346]    [Pg.22]    [Pg.445]    [Pg.265]    [Pg.266]   


SEARCH



Poly P3HT thin films

Poly crystals from thin films

Poly films

Poly thin film preparation

Polystyrene blend with poly , thin film

Thin films poly -silica

Thin poly

Thin-film coatings poly

© 2024 chempedia.info