Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly solids

Of particular interest has been the study of the polymer configurations at the solid-liquid interface. Beginning with lattice theories, early models of polymer adsorption captured most of the features of adsorption such as the loop, train, and tail structures and the influence of the surface interaction parameter (see Refs. 57, 58, 62 for reviews of older theories). These lattice models have been expanded on in recent years using modem computational methods [63,64] and have allowed the calculation of equilibrium partitioning between a poly-... [Pg.399]

While the v-a plots for ionized monolayers often show no distinguishing features, it is entirely possible for such to be present and, in fact, for actual phase transitions to be observed. This was the case for films of poly(4-vinylpyri-dinium) bromide at the air-aqueous electrolyte interface [118]. In addition, electrostatic interactions play a large role in the stabilization of solid-supported lipid monolayers [119] as well as in the interactions between bilayers [120]. [Pg.556]

N-Benzylamides are recommended when the corresponding acid is liquid and/or water-soluble so that it cannot itself serve as a derivative. Phe benzylamides derived from the simple fatty acids or their esters are not altogether satisfactory (see Table below) those derived from most hydroxy-acids and from poly basic acids or their esters are formed in good yield and are easily purified. The esters of aromatic acids yield satisfactory derivatives but the method must compete with the equally simple process of hydrolysis and precipitation of the free acid, an obvious derivative when the acid is a solid. The procedure fails with esters of keto, sul phonic, inorganic and some halogenated aliphatic esters. [Pg.394]

Mono- and di saccharides are colourless solids or sjrrupy liquids, which are freely soluble in water, practically insoluble in ether and other organic solvents, and neutral in reaction. Polysaccharides possess similar properties, but are generally insoluble in water because of their high molecular weights. Both poly- and di-saccharides are converted into monosaccharides upon hydrolysis. [Pg.453]

Solid-phase microextractions also have been developed. In one approach, a fused silica fiber is placed inside a syringe needle. The fiber, which is coated with a thin organic film, such as poly(dimethyl siloxane), is lowered into the sample by depressing a plunger and exposed to the sample for a predetermined time. The fiber is then withdrawn into the needle and transferred to a gas chromatograph for analysis. [Pg.213]

Saito described a quantitative spectrophotometric procedure for iron based on a solid-phase extraction using bathophenanthroline in a poly(vinyl chloride) membrane. ... [Pg.452]

Surface Protection. The surface properties of fluorosihcones have been studied over a number of years. The CF group has the lowest known intermolecular force of polymer substituents. A study (6) of liquid and solid forms of fluorosihcones has included a comparison to fluorocarbon polymers. The low surface tensions for poly(3,3,3-trifluoropropyl)methylsiloxane and poly(3,3,4,4,5,5,6,6,6-nonafluorohexyl)methylsiloxane both resemble some of the lowest tensions for fluorocarbon polymers, eg, polytetrafluoroethylene. [Pg.400]

Fig. 5. Examples of ihe correlation between measured adhesive strength and (l+cos6). (a) Plot of data from Raraty and Tabor [171J for adhesion of ice to various solids, (b) Plot of data of Barbaris [172] for adhesion of a mixture of epoxy and polyamide resin to low density poly(ethylene) treated in various ways. Both figures from ref. [31], by permission. Fig. 5. Examples of ihe correlation between measured adhesive strength and (l+cos6). (a) Plot of data from Raraty and Tabor [171J for adhesion of ice to various solids, (b) Plot of data of Barbaris [172] for adhesion of a mixture of epoxy and polyamide resin to low density poly(ethylene) treated in various ways. Both figures from ref. [31], by permission.
The amorphous polyesters are becoming increasingly important for one-component 100% solid moisture-curing adhesives. These materials are usually viscous, amorphous liquids. Poly(2-methylpropane adipate), an example of an amorphous polyester, is a liquid even at a molecular weight of 2000. The amorphous polyesters are usually asymmetrical in structure. In the poly(2-methylpropane adipate) example, the pendant methyl group would be expected to interfere with chain packing, thereby preventing crystallization [27]. [Pg.770]

The specialty class of polyols includes poly(butadiene) and polycarbonate polyols. The poly(butadiene) polyols most commonly used in urethane adhesives have functionalities from 1.8 to 2.3 and contain the three isomers (x, y and z) shown in Table 2. Newer variants of poly(butadiene) polyols include a 90% 1,2 product, as well as hydrogenated versions, which produce a saturated hydrocarbon chain [28]. Poly(butadiene) polyols have an all-hydrocarbon backbone, producing a relatively low surface energy material, outstanding moisture resistance, and low vapor transmission values. Aromatic polycarbonate polyols are solids at room temperature. Aliphatic polycarbonate polyols are viscous liquids and are used to obtain adhesion to polar substrates, yet these polyols have better hydrolysis properties than do most polyesters. [Pg.770]

The theory of crystal growth accordingly starts usually with the assumption that the atoms in the gaseous, diluted, or hquid mother phase will have a tendency to arrange themselves in a regular lattice structure. We ignore here for the moment the formation of poly crystalhne solids. In principle we should start with the quantum-mechanical basis of the formation of such lattice structures. Unfortunately, however, even with the computational effort of present computers with a performance of about 100 megaflops... [Pg.854]

The Zincke reaction has also been adapted for the solid phase. Dupas et al. prepared NADH-model precursors 58, immobilized on silica, by reaction of bound amino functions 57 with Zincke salt 8 (Scheme 8.4.19) for subsequent reduction to the 1,4-dihydropyridines with sodium dithionite. Earlier, Ise and co-workers utilized the Zincke reaction to prepare catalytic polyelectrolytes, starting from poly(4-vinylpyridine). Formation of Zincke salts at pyridine positions within the polymer was achieved by reaction with 2,4-dinitrochlorobenzene, and these sites were then functionalized with various amines. The resulting polymers showed catalytic activity in ester hydrolysis. ... [Pg.363]

The mixture of deprotected amino acid derivatives in solution was then immobilized onto a polymeric solid support, typically activated 5-)xm macroporous poly(hydroxyethyl methacrylate-co-ethylene dimethacrylate) beads, to afford the chiral stationary phases with a multiplicity of selectors. Although the use of columns... [Pg.86]

One of the first methods of polymerizing vinyl monomers was to expose the monomer to sunlight. In 1845, Blyth and Hoffman [7] obtained by this means a clear glassy polymeric product from styrene. Berthelot and Gaudechon [8] were the first to polymerize ethylene to a solid form and they used ultraviolet (UV) light for this purpose. The first demonstration of the chain reaction nature of photoinitiation of vinyl polymerization was done by Ostromislenski in 1912 [9]. He showed that the amount of poly(vinyl bromide) produced was considerably in excess of that produced for an ordinary chemical reaction. [Pg.244]

As an energetic polymer, poly(glycidyl azide) (PGA) mance solid propellant binder [63,64]. For this purpose,... [Pg.733]

Kaeriyama et al. [10] reported on the Ni(0)-catalyzed coupling of 1,4-dibromo-2-methoxycarbonylbenzene to poly(2-methoxycarbonyl-l,4-phenylene) (4) as a soluble, processable precursor for parent PPP 1. The aromatic polyester-type PPP precursor 4 was then saponified to carboxylated PPP 5 and thermally decarboxy-latcd to 1 with CuO catalysts. However, due to the harsh reaction conditions in the final step, the reaction cannot be carried out satisfactorily in the solid state (film). [Pg.33]


See other pages where Poly solids is mentioned: [Pg.18]    [Pg.2270]    [Pg.221]    [Pg.1142]    [Pg.768]    [Pg.258]    [Pg.70]    [Pg.377]    [Pg.359]    [Pg.80]    [Pg.469]    [Pg.188]    [Pg.86]    [Pg.99]    [Pg.166]    [Pg.43]    [Pg.402]    [Pg.9]    [Pg.358]    [Pg.335]    [Pg.24]    [Pg.24]    [Pg.24]    [Pg.24]    [Pg.778]    [Pg.156]    [Pg.279]    [Pg.233]    [Pg.740]    [Pg.137]    [Pg.14]    [Pg.317]    [Pg.27]    [Pg.29]   


SEARCH



Chain Motions in Solid State Poly(Tetrafluoroethylene)

Dry solid polymer electrolyte poly

Poly : solid electrolyte

Poly [methyl solid surface tension

Poly crystalline Solids

Poly solid state 2H NMR measurements for

Poly solid state synthesis

Poly solid-state dynamics

Poly solid-state photolysis

Poly solid-state polymerization

Poly solid-state reactions with

Poly solid-state spectrum

Solid State Poly condensation

Solid solution of poly (cetylvinylether), isomorphous

Solid-phase prepared poly(ethylene

Solid-state studies poly

© 2024 chempedia.info