Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly , rotating-frame

Complementary NMR measurements, such as rises of carbon polarisation in a spin-lock experiment and determination of 13C spin-lattice relaxation times in the rotating frame, Tip(13C), support these conclusions about the correlation times of the side-ring CH and CH2 motions in the various poly(cycloalkyl methacrylates). [Pg.49]

From the viewpoint of polymer applications, the full exploitation of the combined resolution/sensitivity enhancement techniques to obtain "high-resolution" spectra of rare-spin nuclei in solids requires variable temperature spinning capability. In this paper, we describe briefly a spinner assembly suitable for routine operation over a wide range of temperature at the full complement of spinning angles and report - C spectral data at low temperature on several polymers, including fluoropolymers. In addition, variable temperature spin-lattice and rotating frame relaxation times are reported for isotactic poly(propylene). [Pg.215]

Chang et al. reported the miscibility of poly(vinylphenol) (PVPh) with poly(methyl methacrylate) (I MMA) Figure 1 shows the C CP/MAS spectra of pure PVPh, PMMA, PVPh-co-PMMA, PEG, and PVPh-co-PMMA/ poly(ethylene oxide) (PEO) blends of various compositions with peak assignments. VPh contents of PVPh-co-PMMA is 51 mol% and Mn of PEO is 20,000. The spin lattice relaxation time in the rotating frame (Tip ) was measured to examine the homogeneity of PVPh-co-PMMA/PEO blends on the molecular scale. [Pg.168]

The rotating-frame spin-lattice relaxation time for protons, Tip,( H), was measured indirectly from CPMAS/DD NMR to probe possible molecular scales of heterogeneity in the miscible poly(benzyl methacrylate)/poly(ethylene oxide) blend over the whole composition range. ... [Pg.261]

Figure 4. The Tlp for methine (circles) and methylene (triangles) carbons in poly(propylene) as a function of the rotating-frame field and temperature ... Figure 4. The Tlp for methine (circles) and methylene (triangles) carbons in poly(propylene) as a function of the rotating-frame field and temperature ...
Recently, Lipton et al. [25] have used zinc-67 NMR to investigate [Zn(HB(3,5-(CH3)2pz)3)2] complexes which have been doped with traces of paramagnetic [Fe(HB(3,4,5-(CH3)3pz)3)2]. The low-temperature Boltzmann enhanced cross polarization between XH and 67Zn has shown that the paramagnetic iron(II) dopant reduces the proton spin-lattice relaxation time, Tj, of the zinc complexes without changing the proton spin-lattice relaxation time in the Tip rotating time frame. This approach and the resulting structural information has proven very useful in the study of various four-coordinate and six-coordinate zinc(II) poly(pyrazolyl)borate complexes that are useful as enzymatic models. [Pg.108]

Focusing collectors are usually cast acrylic Fresnel lenses, or mirrors of aluminized polyester film in frames of aluminum. These reflectors are either enclosed in a bubble of poly(vinyl fluoride) film, or under polycarbonate glazing, which may be covered with a fluorocarbon film to reduce the reflectivity. The absorbers for active systems are copper or aluminum since the temperatures are too high (325—370°C) for plastics. The frames, however, can be molded ABS, high density polyethylene or polyurethane, either solid or structural foam. Polybutylene or chlorinated PVC can be used for piping hot water, and tanks can be made of either reinforced polyester or blow- or rotational-molded, high density polyethylene (12—15). [Pg.331]

The miscibility of poly(methyl acrylate) (PMAA, Mw= 150,000)/PVAc (Mw= 167,000) blends at various mixing ratios was investigated by both Ti and Tip measurements. C CP/MAS NMR spectra of PMAA, PVAc and the PMAA/PVAc blends are shown in Fig. 2. Figure 3 shows the plots of the spin-lattice relaxation times in the laboratory (Ti , A) and in the rotating (Ti, B) frames against the molar ratio of PMAA (xpmaa)-The ll relaxation times from the CI 12 (O) and OCH (A) carbons for PMAA and PVAc, respectively, can be observed because these two carbons are observed separately even in the blends (Fig. 2), so that it is possible to obtain each relaxation time for PMAA or PVAc in the blends independently. [Pg.170]


See other pages where Poly , rotating-frame is mentioned: [Pg.99]    [Pg.202]    [Pg.206]    [Pg.12]    [Pg.186]    [Pg.258]    [Pg.364]    [Pg.368]    [Pg.235]    [Pg.83]    [Pg.434]    [Pg.445]    [Pg.449]    [Pg.173]    [Pg.1117]    [Pg.271]    [Pg.452]    [Pg.244]    [Pg.136]    [Pg.367]    [Pg.428]    [Pg.83]    [Pg.197]    [Pg.199]    [Pg.105]    [Pg.161]    [Pg.331]    [Pg.408]    [Pg.203]    [Pg.253]    [Pg.125]    [Pg.564]    [Pg.135]    [Pg.140]   


SEARCH



Frame, rotating

Poly , rotating-frame spin-lattice relaxation

Poly rotating frame relaxation times

Poly rotating-frame spin-lattice

© 2024 chempedia.info