Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly , reactive

L. C. James and D. S. Tawfik, Catalytic and binding poly-reactivities shared by two unrelated proteins the potential roll of promiscuity in enzyme evolution. Protein Set, 2001, 10, 2600-2607. [Pg.262]

Nitration and aromatic reactivity D The nitration of hi- and poly-cyclic compounds... [Pg.199]

Polycyclic aromatic hydrocarbons undergo electrophilic aromatic substitution when treated with the same reagents that react with benzene In general polycyclic aromatic hydrocarbons are more reactive than benzene Most lack the symmetry of benzene how ever and mixtures of products may be formed even on monosubstitution Among poly cyclic aromatic hydrocarbons we will discuss only naphthalene and that only briefly Two sites are available for substitution m naphthalene C 1 and C 2 C 1 being normally the preferred site of electrophilic attack... [Pg.506]

Other fairly recent commercial products, poly(vinyl amine) and poly(vinyl amine vinyl alcohol), have addressed the need for primary amines and their selective reactivity. Prior efforts to synthesize poly(vinyl amine) have been limited because of the difficulty hydrolyzing the intermediate polymers. The current product is prepared from /V-ethenylformamide (20) formed from the reaction of acetaldehyde and formamide. The vinyl amide is polymerized with a free-radical initiator, then hydrolyzed (eq. 7). [Pg.320]

The protonated form of poly(vinyl amine) (PVAm—HCl) has two advantages over many cationic polymers high cationic charge densities are possible and the pendent primary amines have high reactivity. It has been appHed in water treatment, paper making, and textiles (qv). The protonated forms modified with low molecular weight aldehydes are usehil as fines and filler retention agents and are in use with recycled fibers. As with all new products, unexpected appHcations, such as in clear antiperspirants, have been found. It is usehil in many metal complexation appHcations (49). [Pg.320]

The major use of vinylpyrrohdinone is as a monomer in manufacture of poly(vinylpyrrohdinone) (PVP) homopolymer and in various copolymers, where it frequendy imparts hydrophilic properties. When PVP was first produced, its principal use was as a blood plasma substitute and extender, a use no longer sanctioned. These polymers are used in pharmaceutical and cosmetic appHcations, soft contact lenses, and viscosity index improvers. The monomer serves as a component in radiation-cured polymer compositions, serving as a reactive diluent that reduces viscosity and increases cross-linking rates (see... [Pg.114]

Brominated Styrene. Dibromostyrene [31780-26 ] is used commercially as a flame retardant in ABS (57). Tribromostyrene [61368-34-1] (TBS) has been proposed as a reactive flame retardant for incorporation either during polymerization or during compounding. In the latter case, the TBS could graft onto the host polymer or homopolymerize to form poly(tribromostyrene) in situ (58). [Pg.470]

HydroxyethyUiydrazine (11) is a plant growth regulator. It is also used to make a coccidiostat, furazoHdone, and has been proposed, as has (14), as a stabilizer in the polymerization of acrylonitrile (72,73). With excess epoxide, polysubstitution occurs and polyol chains can form to give poly(hydroxyaLkyl) hydrazines which have been patented for the preparation of cellular polyurethanes (74) and as corrosion inhibitors for hydrauHc fluids (qv) (75). DialkyUiydrazines, R2NNH2, and alkylene oxides form the very reactive amineimines (15) which react further with esters to yield aminimides (16) ... [Pg.278]

Alkoxide-Type Initiators. Using the guide that an appropriate initiator should have approximately the same stmcture and reactivity as the propagating anionic species (see Table 1), alkoxide, thioalkoxide, carboxylate, and sUanolate salts would be expected to be usehil initiators for the anionic polymeri2ation of epoxides, thikanes, lactones, and sUoxanes, respectively (106—108). Thus low molecular weight poly(ethylene oxide) can be prepared... [Pg.240]

Figure 4c also describes the spontaneous polymerisation ofpara- s.yX en.e diradicals on the surface of soHd particles dispersed in a gas phase that contains this reactive monomer (16) (see XylylenePOLYMERS). The poly -xylylene) polymer produced forms a continuous capsule sheU that is highly impermeable to transport of many penetrants including water. This is an expensive encapsulation process, but it has produced capsules with impressive barrier properties. This process is a Type B encapsulation process, but is included here for the sake of completeness. [Pg.320]

Heat-reactive resins are more compatible than oil-soluble resins with other polar-coating resins, such as amino, epoxy, and poly(vinyl butyral). They are used in interior-can and dmm linings, metal primers, and pipe coatings. The coatings have excellent resistance to solvents, acids, and salts. They can be used over a wide range of temperatures, up to 370°C for short periods of dry heat, and continuously at 150°C. Strong alkaUes should be avoided. [Pg.303]

A protonic acid derived from a suitable or desired anion would seem to be an ideal initiator, especially if the desired end product is a poly(tetramethylene oxide) glycol. There are, however, a number of drawbacks. The protonated THF, ie, the secondary oxonium ion, is less reactive than the propagating tertiary oxonium ion. This results in a slow initiation process. Also, in the case of several of the readily available acids, eg, CF SO H, FSO H, HCIO4, and H2SO4, there is an ion—ester equiUbrium with the counterion, which further reduces the concentration of the much more reactive ionic species. The reaction is illustrated for CF SO counterion as follows ... [Pg.362]

Monomer Reactivity. The poly(amic acid) groups are formed by nucleophilic substitution by an amino group at a carbonyl carbon of an anhydride group. Therefore, the electrophilicity of the dianhydride is expected to be one of the most important parameters used to determine the reaction rate. There is a close relationship between the reaction rates and the electron affinities, of dianhydrides (12). These were independendy deterrnined by polarography. Stmctures and electron affinities of various dianhydrides are shown in Table 1. [Pg.397]

In addition, however, several minor but important side reactions concurrently proceed with the main reaction. These side reactions may become significant under certain conditions, particularly when the main reaction is slow because of low monomer reactivities or low concentrations. The principal pathways involved in the formation of poly(amic acid) are as shown in Eigure 1. [Pg.398]

Polymerization by Transimidization Reaction. Exchange polymerization via equihbrium reactions is commonly practiced for the preparation of polyesters and polycarbonates. The two-step transimidization polymerization of polyimides was described in an early patent (65). The reaction of pyromellitic diimide with diamines in dipolar solvents resulted in poly(amic amide)s that were thermally converted to the polyimides. High molecular weight polyimides were obtained by employing a more reactive bisimide system (66). The intermediate poly(amic ethylcarboamide) was converted to the polyimide at 240°C. [Pg.403]


See other pages where Poly , reactive is mentioned: [Pg.168]    [Pg.1897]    [Pg.84]    [Pg.84]    [Pg.168]    [Pg.1897]    [Pg.84]    [Pg.84]    [Pg.200]    [Pg.202]    [Pg.204]    [Pg.206]    [Pg.208]    [Pg.214]    [Pg.216]    [Pg.218]    [Pg.240]    [Pg.207]    [Pg.240]    [Pg.319]    [Pg.427]    [Pg.235]    [Pg.552]    [Pg.374]    [Pg.241]    [Pg.70]    [Pg.72]    [Pg.262]    [Pg.20]    [Pg.330]    [Pg.397]    [Pg.398]    [Pg.398]    [Pg.399]    [Pg.415]    [Pg.451]    [Pg.80]    [Pg.50]    [Pg.347]   


SEARCH



Biodegradable Aliphatic Polyester Grafted with Poly(Ethylene Glycol) Having Reactive Groups and Preparation Method Thereof

Monomer reactivity in poly

Poly chemically reactive additives

Poly monomer reactivities

Poly reactive groups, with

Poly with nucleophiles, reactivities

Poly(thiophene)s with Pendant Reactive Groups

Reactive liquid polymers poly

© 2024 chempedia.info