Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly bound

The simplest condensed phase VER system is a dilute solution of a diatomic in an atomic (e.g. Ar or Xe) liquid or crystal. Other simple systems include neat diatomic liquids or crystals, or a diatomic molecule bound to a surface. A major step up in complexity occurs with poly atomics, with several vibrations on the same molecule. This feature guarantees enonnous qualitative differences between diatomic and polyatomic VER, and casts doubt on the likelihood of understanding poly atomics by studying diatomics alone. [Pg.3034]

Functionalized conducting monomers can be deposited on electrode surfaces aiming for covalent attachment or entrapment of sensor components. Electrically conductive polymers (qv), eg, polypyrrole, polyaniline [25233-30-17, and polythiophene/23 2JJ-J4-j5y, can be formed at the anode by electrochemical polymerization. For integration of bioselective compounds or redox polymers into conductive polymers, functionalization of conductive polymer films, whether before or after polymerization, is essential. In Figure 7, a schematic representation of an amperomethc biosensor where the enzyme is covalendy bound to a functionalized conductive polymer, eg, P-amino (polypyrrole) or poly[A/-(4-aminophenyl)-2,2 -dithienyl]pyrrole, is shown. Entrapment of ferrocene-modified GOD within polypyrrole is shown in Figure 7. [Pg.46]

In practice, 1—10 mol % of catalyst are used most of the time. Regeneration of the catalyst is often possible if deemed necessary. Some authors have advocated systems in which the catalyst is bound to a polymer matrix (triphase-catalysis). Here separation and generation of the catalyst is easy, but swelling, mixing, and diffusion problems are not always easy to solve. Furthermore, triphase-catalyst decomposition is a serious problem unless the active groups are crowns or poly(ethylene glycol)s. Commercial anion exchange resins are not useful as PT catalysts in many cases. [Pg.189]

The Zincke reaction has also been adapted for the solid phase. Dupas et al. prepared NADH-model precursors 58, immobilized on silica, by reaction of bound amino functions 57 with Zincke salt 8 (Scheme 8.4.19) for subsequent reduction to the 1,4-dihydropyridines with sodium dithionite. Earlier, Ise and co-workers utilized the Zincke reaction to prepare catalytic polyelectrolytes, starting from poly(4-vinylpyridine). Formation of Zincke salts at pyridine positions within the polymer was achieved by reaction with 2,4-dinitrochlorobenzene, and these sites were then functionalized with various amines. The resulting polymers showed catalytic activity in ester hydrolysis. ... [Pg.363]

Webber et al. [60, 78] also studied the fluorescence quenching of diphenylan-thracene (DPA) covalently bound to poly(methacrylic acid), PMAvDPA (23) [60], and to sodium poly(styrenesulfonate), PSSvDPA (24 )[78]. The fluorescence quenching of the excited DPA moiety by MV2+ and Cu2+ was also highly efficient. For example, with PMAvDPA of 0.073 mol% DPA content, the kq values at pH... [Pg.75]

The time profiles of the absorbance due to MV+ at 600 nm are illustrated in Figures 18. Note that they depend on the MV2+ concentration. The curves for the poly(A/St/Phen)-MV2+ systems are biphasic and can be explained in terms of a simple mechanism illustrated in Scheme 2. Here, D A, A represents a compartmentalized Phen moiety (D) and MV2+ dications (A) bound to the hydrophobic microdomain. [Pg.86]

The rate of ET depends on the donor-acceptor separation distance. In the poly(A/St/Phen)-MV2 + system, the Phen moiety is protected from a close contact with MV2+, but the distance between the compartmentalized Phen and bound MV2+ species is uncertain. This means the impossibility of quantitative discussion on the ET rate in terms of the distance dependence. The spread of the... [Pg.89]

The experimental results on poly(methacrylic acid) containing a small mole fraction of either 3-vinylperylene (PMAvPER, (30)) or lV-[12-(4-aminonaphthali-mide)]-2-methylacrylamide (PMAANI, (31)) show charge separation which is efficient for PMAvPER but not much for PMAANI. The quantum yields of charge separation for various chromophores covalently bound to PMA at pH 2.8 are summarized in Table 7. [Pg.91]

Table 7. Quantum yields of charge separation, (pcs, for poly(methacrylic acid)-bound chromophores at pH 2.8 [77]... Table 7. Quantum yields of charge separation, (pcs, for poly(methacrylic acid)-bound chromophores at pH 2.8 [77]...
It has been outlined by several authors that the single macromolecule may be irreversibly bound because of the large number of weakly interacting segments. The first papers on the construction of polymer-coated silica adsorbents involved the physical adsorption of water-soluble polymers. Polyethylene oxides [28, 29] and poly-/V-vinylpyrrolidone [30] are examples of the stationary phases of this type. [Pg.142]

Porous glass (PG) modified with covalently adsorbed poly(p-nitrophenyl acrylate), as described in Sect. 4.1, turned out to be a highly suitable carrier for immobilization of various biospecific ligands and enzymes. When the residual active ester groups of the carrier were blocked by ethanolamine, the immobilized ligands when bound to the solid support via hydrophilic and flexible poly(2-hydroxyethyl acrylamide). The effective biospecific binding provided by the ligands... [Pg.170]

Pyrogels used by the US armed forces include (1) PT1, which is a complex mixt based on a paste of Mg and an oxidizer, bound with petroleum distillate and asphalt. Isobutyl methacrylate is used as a thickener. (2) PT2, which contains 5% isobutyl methacrylate as a thickener, together with Ba nitrate and a small quantity of asphalt. (3) PTV, which is described as an improved oil and metal incendiary mixt composed of 5% poly butadiene, 6% Na nitrate, 28% Mg, and a trace of p-aminophenol in 60% gasoline (Ref 5)... [Pg.978]

F. la-c. Cyclic voltammograms of dissolved and stance confined ferrcx ne in a< tonitrile/0.1 M TBAP. a. 4 X 10 M dissolved ferrocene at Pt. b. 4-ferrocenyl-phenylacetamid monolayer bound to Pt (ref. ). c. Poly-vinylferrocene dip coated on Pt,r = 1 x lO raolcm. Straight arrows indicate diffusional events. Curved arrows electron transfer events (from ref. ). [Pg.60]

Biochemical and genetic experiments in yeast have revealed that the b poly(A) tail and its binding protein, Pablp, are required for efficient initiation of protein synthesis. Further studies showed that the poly(A) tail stimulates recruitment of the 40S ribosomal subunit to the mRNA through a complex set of interactions. Pablp, bound to the poly(A) tail, interacts with eIF-4G, which in turn binds to eIF-4E that is bound to the cap structure. It is possible that a circular structure is formed and that this helps direct the 40S ribosomal subunit to the b end of the mRNA. This helps explain how the cap and poly(A) tail structures have a synergistic effect on protein synthesis. It appears that a similar mechanism is at work in mammalian cells. [Pg.365]


See other pages where Poly bound is mentioned: [Pg.226]    [Pg.226]    [Pg.1126]    [Pg.71]    [Pg.134]    [Pg.456]    [Pg.494]    [Pg.228]    [Pg.41]    [Pg.2049]    [Pg.831]    [Pg.156]    [Pg.400]    [Pg.233]    [Pg.100]    [Pg.103]    [Pg.145]    [Pg.750]    [Pg.15]    [Pg.123]    [Pg.125]    [Pg.131]    [Pg.445]    [Pg.605]    [Pg.85]    [Pg.166]    [Pg.6]    [Pg.172]    [Pg.570]    [Pg.178]    [Pg.287]    [Pg.155]    [Pg.894]    [Pg.137]    [Pg.96]    [Pg.433]    [Pg.106]   


SEARCH



Poly -bound catalysts

Surface-bound poly

Surface-bound poly , steric

© 2024 chempedia.info