Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polarization mechanical wave

Polar mechanisms via polar transition states. If the polarity of a system is enhanced from the ground state to the transition state, acceleration can result from an increase in material-wave interactions during the course of the reaction. The most frequently encountered examples are unimolecular or bimolecu-lar reactions between neutral molecules (because dipoles are developed in the TS) and anionic reactions of tight ion-pairs, i.e. involving charge-localized anions (leading to ionic dissociation in the TS). [Pg.210]

DNP experiments can be classified based on the polarizing mechanisms. We will discuss the continuous-wave (CW) and time domain polarization mechanisms in the following section. [Pg.217]

The subscripts refer to frequency, a sine wave parameter. Doo is the surface charge density at t = 0+, which is after the step but so early that only apparently instantaneous polarization mechanisms have come to effect (high frequency e.g., electronic polarization). The capacitor charging current value at t = 0 is infinite, so the model has some physical flaws. Do is the charge density after so long time that the new equilibrium has been obtained and the charging current has become zero. With a single Debye dispersion, this low-frequency value is called the static value (see Section 6.2.1). t is the exponential time constant of the relaxation process. [Pg.53]

Much of chemistry is concerned with the short-range wave-mechanical force responsible for the chemical bond. Our emphasis here is on the less chemically specific attractions, often called van der Waals forces, that cause condensation of a vapor to a liquid. An important component of such forces is the dispersion force, another wave-mechanical force acting between both polar and nonpolar materials. Recent developments in this area include the ability to measure... [Pg.225]

A slight but systematic decrease in the wave number of the complexes bond vibrations, observed when moving from sodium to cesium, corresponds to the increase in the covalency of the inner-sphere bonds. Taking into account that the ionic radii of rubidium and cesium are greater than that of fluorine, it can be assumed that the covalent bond share results not only from the polarization of the complex ion but from that of the outer-sphere cation as well. This mechanism could explain the main differences between fluoride ions and oxides. For instance, melts of alkali metal nitrates display a similar influence of the alkali metal on the vibration frequency, but covalent interactions are affected mostly by the polarization of nitrate ions in the field of the outer-sphere alkali metal cations [359]. [Pg.181]

In a recent paper. Mo and Gao [5] used a sophisticated computational method [block-localized wave function energy decomposition (BLW-ED)] to decompose the total interaction energy between two prototypical ionic systems, acetate and meth-ylammonium ions, and water into permanent electrostatic (including Pauli exclusion), electronic polarization and charge-transfer contributions. Furthermore, the use of quantum mechanics also enabled them to account for the charge flow between the species involved in the interaction. Their calculations (Table 12.2) demonstrated that the permanent electrostatic interaction energy dominates solute-solvent interactions, as expected in the presence of ion species (76.1 and 84.6% for acetate and methylammonium ions, respectively) and showed the active involvement of solvent molecules in the interaction, even with a small but evident flow of electrons (Eig. 12.3). Evidently, by changing the solvent, different results could be obtained. [Pg.320]

The principle of FMW involves the heating of both the solvent and the matrix by wave/matter interactions. The microwave energy is converted into heat by two mechanisms dipole rotation and ionic conductance. The heating is, therefore, selective with only polar or moderately polar compounds susceptible. Due to the use of low microwave energy the structure of target molecules remains intact. [Pg.114]

A basic principle in quantum mechanics is the indistinguishability of particles. Thus, as indicated in Section 10.5, two particles of the same type in an ideal gas are characterized by a wavefunction, say f(r, 0j, tp 0%, spherical polar coordinates. If for simplicity this wave-function is written as (1,2), the permutation of the coordinates of the two identical particles can be represented by... [Pg.137]

There are two ways of handling the interaction between the QM region and MM region one way is to calculate electrostatic QM-MM interaction with the MM method (sometimes called mechanical embedding, or ME) and the other is to include the QM-MM interaction in the QM Hamiltonian (called electronic embedding or EE). The major difference is that in the ME scheme the QM wave function is the same in the gas phase and the electrostatic interaction is included classically, while in the EE scheme the QM wave function is polarized by the MM charges. The EE scheme is substantially more expensive than ME scheme, as the SCF iteration needs to be performed until self-consistency is achieved for QM electron distribution. Although the polarization effects are called important, as we will show later,... [Pg.23]

The fundamental scattering mechanism responsible for ROA was discovered by Atkins and Barron (1969), who showed that interference between the waves scattered via the polarizability and optical activity tensors of the molecule yields a dependence of the scattered intensity on the degree of circular polarization of the incident light and to a circular component in the scattered light. Barron and Buckingham (1971) subsequently developed a more definitive version of the theory and introduced a definition of the dimensionless circular intensity difference (CID),... [Pg.77]

From the viewpoint of quantum mechanics, the polarization process cannot be continuous, but must involve a quantized transition from one state to another. Also, the transition must involve a change in the shape of the initial spherical charge distribution to an elongated shape (ellipsoidal). Thus an s-type wave function must become a p-type (or higher order) function. This requires an excitation energy call it A. Straightforward perturbation theory, applied to the Schroedinger aquation, then yields a simple expression for the polarizability (Atkins and Friedman, 1997) ... [Pg.48]

Microwave effects result from material-wave interactions and, because of the dipolar polarization phenomenon, the greater the polarity of a molecule (such as the solvent) the more pronounced the microwave effect when the rise in temperature [43] is considered. In terms of reactivity and kinetics the specific effect has therefore to be considered according to the reaction mechanism and, particularly, with regard to how the... [Pg.69]

As a further consequence of these assumptions, it might be foreseen that micro-wave effects could be important in determining the selectivity of some reactions. When competitive reactions are involved, the GS is common for both processes. The mechanism occurring via the more polar TS could, therefore, be favored under the action of microwave radiation (Scheme 3.7). [Pg.75]


See other pages where Polarization mechanical wave is mentioned: [Pg.103]    [Pg.30]    [Pg.440]    [Pg.229]    [Pg.200]    [Pg.376]    [Pg.32]    [Pg.651]    [Pg.14]    [Pg.37]    [Pg.382]    [Pg.22]    [Pg.167]    [Pg.100]    [Pg.275]    [Pg.447]    [Pg.396]    [Pg.1190]    [Pg.2458]    [Pg.2462]    [Pg.2462]    [Pg.2465]    [Pg.102]    [Pg.357]    [Pg.248]    [Pg.397]    [Pg.98]    [Pg.99]    [Pg.63]    [Pg.1313]    [Pg.352]    [Pg.414]    [Pg.97]    [Pg.418]    [Pg.625]    [Pg.308]    [Pg.206]   
See also in sourсe #XX -- [ Pg.19 , Pg.30 ]




SEARCH



Mechanical polarization

Polar mechanisms

Polarization mechanism

Polarization wave

Polarized wave

Wave mechanics

Wave mechanism

Waves mechanical

© 2024 chempedia.info