Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polarization absolute

When placed separately into a polarimcter, enantiomers rotate plane-polarized absolute configurations at each and every... [Pg.23]

The analytical characteristics (degree of polarization, absolute and relative limits of detection) of ID18F were determined bymeasuringa number of existing certified reference materials (CRMs). The degree of polarization is >99.5%. The available relative detection limits (DL) are <0.1 ppm for elements of Z > 25. Relative DLs down to a few ppb are possible for a number of elements on the basis of 1,000 s live time measurements and ppm DLs can be reached for measurements of a few seconds. The absolute DLs are less than 1 fg for elements of Z > 25. [Pg.1744]

From SCRP spectra one can always identify the sign of the exchange or dipolar interaction by direct exammation of the phase of the polarization. Often it is possible to quantify the absolute magnitude of D or J by computer simulation. The shape of SCRP spectra are very sensitive to dynamics, so temperature and viscosity dependencies are infonnative when knowledge of relaxation rates of competition between RPM and SCRP mechanisms is desired. Much use of SCRP theory has been made in the field of photosynthesis, where stnicture/fiinction relationships in reaction centres have been connected to their spin physics in considerable detail [, Mj. [Pg.1617]

Two gas chromatograms showing the effect of polarity of the stationary phase on the separation efficiency for three substances of increasing polarity toluene, pyridine, and benzaldehyde. (a) Separation on silicone SE-30, a nonpolar phase, and (b) separation on elastomer OV-351, a more polar phase. Note the greatly changed absolute and relative retention times the more polar pyridine and benzaldehyde are affected most by the move to a more polar stationary phase. [Pg.249]

The activity coefficient (y) based corrector is calculated using any applicable activity correlating equation such as the van Laar (slightly polar) or Wilson (more polar) equations. The average absolute error is 20 percent. [Pg.415]

Binary Mixtures—Low Pressure—Polar Components The Brokaw correlation was based on the Chapman-Enskog equation, but 0 g and were evaluated with a modified Stockmayer potential for polar molecules. Hence, slightly different symbols are used. That potential model reduces to the Lennard-Jones 6-12 potential for interactions between nonpolar molecules. As a result, the method should yield accurate predictions for polar as well as nonpolar gas mixtures. Brokaw presented data for 9 relatively polar pairs along with the prediction. The agreement was good an average absolute error of 6.4 percent, considering the complexity of some of... [Pg.595]

Umesi-Danner They developed an equation for nonaqueous solvents with nonpolar and polar solutes. In all, 258 points were involved in the regression. Rj is the radius of gyration in A of the component molecule, which has been tabulated by Passut and Danner for 250 compounds. The average absolute deviation was 16 percent, compared with 26 percent for the Wilke-Chang equation. [Pg.597]

Siddiqi-Lucas suggested that component volume fractions might be used to correlate the effects of concentration dependence. They found an average absolute deviation of 4.5 percent for nonpolar-nonpolar mixtures, 16.5 percent for polar-nonpolar mixtures, and 10.8 percent for polar-polar mixtures. [Pg.599]

Heuristic Fxplanation As we can see from Fig. 22-31, the DEP response of real (as opposed to perfect insulator) particles with frequency can be rather complicated. We use a simple illustration to account for such a response. The force is proportional to the difference between the dielectric permittivities of the particle and the surrounding medium. Since a part of the polarization in real systems is thermally activated, there is a delayed response which shows as a phase lag between D, the dielectric displacement, and E, the electric-field intensity. To take this into account we may replace the simple (absolute) dielectric constant by the complex (absolute) dielectric... [Pg.2011]

It is always important to keep in mind the relative nature of substituent effects. Thus, the effect of the chlorine atoms in the case of trichloroacetic acid is primarily to stabilize the dissociated anion. The acid is more highly dissociated than in the unsubstituted case because there is a more favorable energy difference between the parent acid and the anion. It is the energy differences, not the absolute energies, that determine the equilibrium constant for ionization. As we will discuss more fully in Chapter 4, there are other mechanisms by which substituents affect the energy of reactants and products. The detailed understanding of substituent effects will require that we separate polar effects fiom these other factors. [Pg.20]

The main difference between the G2 models is tlie way in which tlie electron correlation beyond MP2 is estimated. The G2 method itself performs a series of MP4 and QCISD(T) calculations, G2(MP2) only does a single QCISD(T) calculation with tlie 6-311G(d,p) basis, while G2(MP2, SVP) (SVP stands for Split Valence Polarization) reduces the basis set to only 6-31 G(d). An even more pruned version, G2(MP2,SV), uses the unpolarized 6-31 G basis for the QCISD(T) part, which increases the Mean Absolute Deviation (MAD) to 2.1 kcal/mol. That it is possible to achieve such good performance with tliis small a basis set for QCISD(T) partly reflects the importance of the large basis MP2 calculation and partly the absorption of errors in the empirical correction. [Pg.166]

Given the diversity of different SCRF models, and the fact that solvation energies in water may range from a few kcal/mol for say ethane to perhaps 100 kcal/mol for an ion, it is difficult to evaluate just how accurately continuum methods may in principle be able to represent solvation. It seems clear, however, that molecular shaped cavities must be employed, the electiostatic polarization needs a description either in terms of atomic charges or quite high-order multipoles, and cavity and dispersion terms must be included. Properly parameterized, such models appear to be able to give absolute values with an accuracy of a few kcal/mol." Molecular properties are in many cases also sensitive to the environment, but a detailed discussion of this is outside the scope of this book. ... [Pg.397]

Figure 12-8 summarizes the information available as far as the HOMO/LUMO positions of the compounds is concerned. Being inferred from oxidation/rcduction potentials measured by cyclic voltammetry in polar solution and from HOMO/ LUMO gaps, respectively, absolute values should be viewed with some caution. [Pg.201]

Pioneering work by Wallingj94 established that the specificity shown by t-butoxy radical is solvent dependent. Work21 22396 on the reactions of /-butoxy radicals with a series of a-mcthylvinyl monomers has shown that polar and aromatic solvents favor abstraction over addition, and [3-scission over either addition or abstraction. Recently, Weber and Fischer418 and Tsentalovich at a/.410 reported absolute rate constants for [3-scission of r-butoxy radicals in various solvents. These studies indicate that p-scission is strongly solvent dependent while abstraction is relatively insensitive to solvent. [Pg.123]

For less than 1% error for a, it is sufficient to "polarize only the valence electrons in Be the polarization of the Is orbital leads to an a value within 0.1% of HFL value. Contrary to Be, the polarization of the inner shell is now absolutly negligible for Ne. [Pg.276]


See other pages where Polarization absolute is mentioned: [Pg.421]    [Pg.344]    [Pg.421]    [Pg.344]    [Pg.389]    [Pg.437]    [Pg.1598]    [Pg.1609]    [Pg.237]    [Pg.318]    [Pg.151]    [Pg.186]    [Pg.598]    [Pg.598]    [Pg.696]    [Pg.732]    [Pg.83]    [Pg.143]    [Pg.351]    [Pg.1125]    [Pg.74]    [Pg.267]    [Pg.102]    [Pg.244]    [Pg.1]    [Pg.205]    [Pg.174]    [Pg.204]    [Pg.572]    [Pg.60]    [Pg.242]    [Pg.48]    [Pg.125]    [Pg.139]    [Pg.100]    [Pg.325]    [Pg.186]   
See also in sourсe #XX -- [ Pg.455 ]




SEARCH



Absolute polarity

Absolute polarity

Crystal absolute polarity

Polar axis absolute, direction

Polarization direction, absolute

© 2024 chempedia.info