Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthons polarity

You ve now met a variety of synthons and it s useful to be able to classify them as donor or acceptor synthons, We call a negatively polarized synthon a donor synthon and give it the symbol d . Positively polarized synthons are called acceptor synthons and are given the symbol a . [Pg.791]

It is still premature to claim that the pairs of reversed polarity synthons can be envisaged for all important types of fragments. However, the trend is toward a dedicated search in this direction. Below we will illustrate the effectiveness of several synthetic solutions based upon the utilization of this approach. [Pg.160]

Alkyl halides and sulfonates are the most frequently used alkylating acceptor synthons. The carbonyl group is used as the classical a -synthon. O-Silylated hemithioacetals (T.H. Chan, 1976) and fomic acid orthoesters are examples for less common a -synthons. In most synthetic reactions carbon atoms with a partial positive charge (= positively polarized carbon) are involved. More reactive, "free carbocations as occurring in Friedel-Crafts type alkylations and acylations are of comparably limited synthetic value, because they tend to react non-selectively. [Pg.15]

Syntheses of alkenes with three or four bulky substituents cannot be achieved with an ylide or by a direct coupling reaction. Sterical hindrance of substituents presumably does not allow the direct contact of polar or radical carbon synthons in the transition state. A generally applicable principle formulated by A. Eschenmoser indicates a possible solution to this problem //an intermolecular reaction is complex or slow, it is advisable to change the educt in such a way. that the critical bond formation can occur intramolecularly (A. Eschenmoser, 1970). [Pg.34]

In the synthesis of molecules without functional groups the application of the usual polar synthetic reactions may be cumbersome, since the final elimination of hetero atoms can be difficult. Two solutions for this problem have been given in the previous sections, namely alkylation with nucleophilic carbanions and alkenylation with ylides. Another direct approach is to combine radical synthons in a non-polar reaction. Carbon radicals are. however, inherently short-lived and tend to undergo complex secondary reactions. Escheirmoser s principle (p. 34f) again provides a way out. If one connects both carbon atoms via a metal atom which (i) forms and stabilizes the carbon radicals and (ii) can be easily eliminated, the intermolecular reaction is made intramolecular, and good yields may be obtained. [Pg.36]

The reactions described so far can be considered as alkylation, alkenylation, or alkynylation reactions. In principle all polar reactions in syntheses, which produce monofunctional carbon compounds, proceed in the same way a carbanion reacts with an electropositive carbon atom, and the activating groups (e.g. metals, boron, phosphorus) of the carbanion are lost in the work-up procedures. We now turn to reactions, in which the hetero atoms of both the acceptor and donor synthons are kept in a difunctional reaction produa. [Pg.50]

The most general methods for the syntheses of 1,2-difunctional molecules are based on the oxidation of carbon-carbon multiple bonds (p. 117) and the opening of oxiranes by hetero atoms (p. 123fl.). There exist, however, also a few useful reactions in which an a - and a d -synthon or two r -synthons are combined. The classical polar reaction is the addition of cyanide anion to carbonyl groups, which leads to a-hydroxynitriles (cyanohydrins). It is used, for example, in Strecker s synthesis of amino acids and in the homologization of monosaccharides. The ff-hydroxy group of a nitrile can be easily substituted by various nucleophiles, the nitrile can be solvolyzed or reduced. Therefore a large variety of terminal difunctional molecules with one additional carbon atom can be made. Equally versatile are a-methylsulfinyl ketones (H.G. Hauthal, 1971 T. Durst, 1979 O. DeLucchi, 1991), which are available from acid chlorides or esters and the dimsyl anion. Carbanions of these compounds can also be used for the synthesis of 1,4-dicarbonyl compounds (p. 65f.). [Pg.50]

Isoxazole (418) was obtained from a stepwise polar addition of diethylaminopropyne to the 1,4,2-dioxazolone (417) which provided the (NOC) synthon (73TL233). [Pg.81]

All around this chapter, we have seen that a,/J-unsaturated Fischer carbene complexes may act as efficient C3-synthons. As has been previously mentioned, these complexes contain two electrophilic positions, the carbene carbon and the /J-carbon (Fig. 3), so they can react via these two positions with molecules which include two nucleophilic positions in their structure. On the other hand, alkenyl- and alkynylcarbene complexes are capable of undergoing [1,2]-migration of the metalpentacarbonyl allowing an electrophilic-to-nucleophilic polarity change of the carbene ligand /J-carbon (Fig. 3). These two modes of reaction along with other processes initiated by [2+2] cycloaddition reactions have been applied to [3+3] cyclisation processes and will be briefly discussed in the next few sections. [Pg.88]

Syntheses (a) and (c) use the same disconnect ion but with opposite polarity so that the acetylene anion In (c) is a reagent for the synthon (34),... [Pg.177]

Several steps are involved in these reactions. First, the enolate of the (1-kelocstcr opens the cyclopropane ring. The polarity of this process corresponds to that in the formal synthon B because the cyclopropyl carbons are electrophilic. The product of the ringopening step is a stabilized Wittig ylide, which can react with the ketone carbonyl to form the carbocyclic ring. [Pg.1171]

Enoate reductase reduces a,/3-unsaturated carboxylate ions in an NADPH-dependent reaction to saturated carboxylated anions. Useful chiral synthons can be conveniently prepared by the asymmetric reduction of a triply substituted C—C bond by the action of enoate reductase, when the double bond is activated with strongly polarizing groups [22]. Enoate reductases are not commercially available as isolated enzymes therefore, microorganisms such as baker s yeast or Clostridium sp. containing enoate reductase are used to carry out the reduction reaction. [Pg.234]

The success of these reactions was intriguing because, under normal reaction conditions, group 14 organometallic compounds serve as carbanion synthons. The anodic oxidation reaction successfully reversed this polarity thereby expanding the overall synthetic utihty of group 14 organometallic intermediates. [Pg.64]

Simple reactivity inversion" implies using an umpoled synthon whose origin has, in principle, nothing in common with the synthon with "unnatural" polarity. An example of this type of reactivity inversion is found in one of the possible synthesis of cw-jasmone (3) in which the nitroethane (4) is used as an equivalent of an "acetyl anion" and reacts with an a,P-unsaturated ketone to give the corresponding 1,4-bifunctional system which can then be transformed by a Nef-type reaction into the dissonant 1,4-dicarbonyl system [5]. An intramolecular aldol condensation finally affords the target molecule (Scheme 5.3). [Pg.113]

Another versatile synthon for the preparation of fullerene derivatives with polar groups on the side chain is the l,2-(carboxymethano)[60]fullerene 123, which can be obtained either from the corresponding ethoxycarbonylmethyl carboxylate 124 or tert-butyl carboxylate 125, which themselves are accessible by the reaction of the corresponding diazoacetate with Cjq (Scheme 4.26) [113],... [Pg.126]

Amino-l,2,4-thiadiazoles 191 are obtained when ether is used (249), while 5-alkylthio-1,2,3-triazoles 192 result when the reaction is carried out in THF (250). Reaction of 3 with carbon disulfide leads to 5-alkylthio-l,2,3-thiadiazoles 193 (251). While 3 can act as a synthetic equivalent of the RC—N—N synthon (R = H, SiMea) in all these reactions, it should be emphasized that it does not react by a concerted 1,3-dipolar cycloaddition but rather by a stepwise polar mechanism. The highly nucleophilic character of 3 can account for why diazomethane and... [Pg.579]

More recently, radical additions to fluoroethenes have attracted attention. Eguchi et al. [125] applied the Barton decarboxylation procedure to add a range of alkyl radicals to l,l-dichloro-2,2-difluoroethene. Addition was regioselective and the terminal carbon could be hydrolysed to a carboxyl group with silver(I) mediation (Eq. 39). The fluoroalkene is effectively an equivalent for either difluoroacetyl anion or cation synthons, because the adding radical can be approached from either polarity manifold. [Pg.148]

In non-polar solvents, glutaconic anhydride (631) exists predominantly as its dioxo tautomer (81JCS(P1)146). Diels-Alder reaction between this anhydride and cyclopentadiene, however, occurs smoothly in toluene under reflux to afford the endo-adduct (632) in 70% yield. Treatment of (632) with methanol and then diazomethane affords a high overall yield of the cis diester (633), a compound which should be convertible into the important prostaglandin synthon (634 Scheme 143). [Pg.472]

A retrosynthetic analysis leads to one synthon with reversed polarity and another with normal polarity ... [Pg.653]


See other pages where Synthons polarity is mentioned: [Pg.12]    [Pg.238]    [Pg.12]    [Pg.238]    [Pg.582]    [Pg.134]    [Pg.4]    [Pg.17]    [Pg.9]    [Pg.139]    [Pg.129]    [Pg.187]    [Pg.295]    [Pg.111]    [Pg.112]    [Pg.205]    [Pg.70]    [Pg.3]    [Pg.5]    [Pg.655]    [Pg.655]    [Pg.731]    [Pg.4]    [Pg.17]   
See also in sourсe #XX -- [ Pg.130 ]




SEARCH



Synthon

Synthons

© 2024 chempedia.info