Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polarity of radicals

It is increasingly apparent that polar characteristics of radicals are important in organic synthesis [122] and the effect of fluorine on the polarity of radicals is very significant. Reactions of perfluoroalkyl radicals with a series of substituted p-styrenes [123] (Figure 4.51) shows that the rate constant for radical addition to alkenes increases as the alkene becomes more electron-rich (Table 4.16) and, in similar additions, perfluoroalkyl radicals reacted 40000 times faster with 1-hexene than the corresponding alkyl radicals. [Pg.117]

By examining the expression for Q ( equation (B1.16.4)). it should now be clear that the nuclear spin state influences the difference in precessional frequencies and, ultimately, the likelihood of intersystem crossing, tlnough the hyperfme tenn. It is this influence of nuclear spin states on electronic intersystem crossing which will eventually lead to non-equilibrium distributions of nuclear spin states, i.e. spin polarization, in the products of radical reactions, as we shall see below. [Pg.1595]

As for CIDNP, the polarization pattern is multiplet (E/A or A/E) for each radical if Ag is smaller than the hyperfme coupling constants. In the case where Ag is large compared with the hyperfmes, net polarization (one radical A and the other E or vice versa) is observed. A set of mles similar to those for CIDNP have been developed for both multiplet and net RPM in CIDEP (equation (B1.16.8) and equation (B1.16.9)) [36]. In both expressions, p is postitive for triplet precursors and negative for singlet precursors. J is always negative for neutral RPs, but there is evidence for positive J values in radical ion reactions [37]. In equation (B 1.16.8),... [Pg.1607]

Closs G L and Trifunac A D 1969 Chemically Induced nuclear spin polarization as a tool for determination of spin multiplicities of radical-pair precursors J. Am. Chem. Soc. 91 4554-5... [Pg.1618]

Kaptein R and Oosterhoff J L 1969 Chemically Induced dynamic nuclear polarization III (anomalous multiplets of radical coupling and disproportionation products) Chem. Phys. Lett. 4 214-16... [Pg.1618]

Closs G L, Forbes M D E and Norris J R 1987 Spin-polarized electron paramagnetic resonance spectra of radical pairs in micelles. Observation of electron spin-spin interactions J. Phys. Chem. 91 3592-9... [Pg.1620]

Syntheses of alkenes with three or four bulky substituents cannot be achieved with an ylide or by a direct coupling reaction. Sterical hindrance of substituents presumably does not allow the direct contact of polar or radical carbon synthons in the transition state. A generally applicable principle formulated by A. Eschenmoser indicates a possible solution to this problem //an intermolecular reaction is complex or slow, it is advisable to change the educt in such a way. that the critical bond formation can occur intramolecularly (A. Eschenmoser, 1970). [Pg.34]

In the case of substituted aryl radicals, the results may be slightly different, depending on the polarity of the radicals. With electrophilic radicals the overall reactivity of the thiazole nucleus will decrease and the percentage of 5-substituted isomer (electron-rich position) will increase, in comparison with phenyl radicals. The results are indicated in Table III-28. [Pg.366]

In this equation P and Q are parameters that describe the reactivity of the radical and monomer of the designated species, and the values of e measure the polarity of the two components without distinguishing between monomer and radical. [Pg.445]

Acylation. Aliphatic amine oxides react with acylating agents such as acetic anhydride and acetyl chloride to form either A[,A/-diaLkylamides and aldehyde (34), the Polonovski reaction, or an ester, depending upon the polarity of the solvent used (35,36). Along with a polar mechanism (37), a metal-complex-induced mechanism involving a free-radical intermediate has been proposed. [Pg.191]

An interesting method for the substitution of a hydrogen atom in rr-electron deficient heterocycles was reported some years ago, in the possibility of homolytic aromatic displacement (74AHC(16)123). The nucleophilic character of radicals and the important role of polar factors in this type of substitution are the essentials for a successful reaction with six-membered nitrogen heterocycles in general. No paper has yet been published describing homolytic substitution reactions of pteridines with nucleophilic radicals such as alkyl, carbamoyl, a-oxyalkyl and a-A-alkyl radicals or with amino radical cations. [Pg.290]

Although Lewis structures of this type are not entirely adequate descriptions of the structure of the excited states, they do correspond to the MO picture by indicating distortion of chaige and the presence of polar or radical-like centers. The excited states are much more reactive than the corresponding ground-state molecules. In addition to the increased energy content, this high reactivity is associated with the presence of half-filled orbitals. The two SOMO orbitals in the excited states have enhanced radical, cationic, or anionic character. [Pg.754]

In some cases, due to the highly polar character of the sulfate radicals, peroxydisulfate initiators can provide slow polymerization rates with some apolar monomers since the polar sulfate radicals cannot easily penetrate into the swollen micelle structures containing apolar monomers. The use of mercaptans together with the peroxydisulfate type initiators is another method to obtain higher polymerization rates [43]. The mercaptyl radicals are more apolar relative to the free sulfate radicals and can easily interact with the apolar monomers to provide higher polymerization rates. [Pg.195]

The mechanism of the Diels-Alder cycloaddition is different from that of other reactions we ve studied because it is neither polar nor radical. Rather, the Diels-Alder reaction is a pericyclic process. Pericyclic reactions, which we ll discuss in more detail in Chapter 30, take place in a single step by a cyclic redistribution of bonding electrons. The two reactants simply join together through a cyclic transition state in which the two new carbon-carbon bonds form at the same time. [Pg.493]

For PPV-imine and PPV-ether the oxidation potential, measured by cyclic voltammetry using Ag/AgCl as a reference are ,M.=0.8 eV and 0.92 eV, respectively. By adopting the values 4.6 eV and 4.8 eV for the work functions of a Ag/AgCl and an 1TO electrode, respectively, one arrives at zero field injection barriers of 0.4 and 0.55 eV. These values represent lower bounds because cyclic voltammetry is carried out in polar solvents in which the stabilization cncigy of radical ions exceeds that in a polymer film, where only electronic polarization takes place. E x values for LPPP and PPPV are not available but in theory they should exceed those of PPV-imine and PPV-ether. [Pg.513]

For a long time, this finding was correlated with the observation that substituents at a radical center tend to enhance its stability (Section 1.1.2). This in turn led to the belief that the degree of stabilization conferred on the product radical by the substituents was the prime factor determining the orientation and rate of radical addition to olefins. That steric, polar, or other factors might favor the same outcome was either considered to be of secondary importance or simply ignored. ... [Pg.16]

The data of Table 1.2 and Table 1.3 clearly cannot be rationalized purely in terms of the relative stabilities of the product radicals. Rather, a complex interplay of polar, steric, and bond strength terms5 must be invoked.13 In the following sections, each of these factors will be examined separately to illustrate their role in determining the outcome of radical addition. [Pg.19]

The traditional means of assessment of the sensitivity of radical reactions to polar factors and establishing the electrophilicity or nucleophilieity of radicals is by way of a Hammett op correlation. Thus, the reactions of radicals with substituted styrene derivatives have been examined to demonstrate that simple alkyl radicals have nucleophilic character38,39 while haloalkyl radicals40 and oxygcn-ccntcrcd radicals " have electrophilic character (Tabic 1.4). It is anticipated that electron-withdrawing substituents (e.g. Cl, F, C02R, CN) will enhance overall reactivity towards nucleophilic radicals and reduce reactivity towards electrophilic radicals. Electron-donating substituents (alkyl) will have the opposite effect. [Pg.21]


See other pages where Polarity of radicals is mentioned: [Pg.136]    [Pg.178]    [Pg.117]    [Pg.169]    [Pg.169]    [Pg.169]    [Pg.400]    [Pg.169]    [Pg.169]    [Pg.169]    [Pg.136]    [Pg.178]    [Pg.117]    [Pg.169]    [Pg.169]    [Pg.169]    [Pg.400]    [Pg.169]    [Pg.169]    [Pg.169]    [Pg.1591]    [Pg.1604]    [Pg.1607]    [Pg.220]    [Pg.226]    [Pg.465]    [Pg.110]    [Pg.69]    [Pg.72]    [Pg.73]    [Pg.74]    [Pg.250]    [Pg.196]    [Pg.1178]    [Pg.230]    [Pg.381]    [Pg.390]    [Pg.30]    [Pg.109]    [Pg.12]    [Pg.17]   
See also in sourсe #XX -- [ Pg.300 ]

See also in sourсe #XX -- [ Pg.300 ]




SEARCH



Electron Spin Polarization Transfer from Radicals of Photoinitiators to Stable Nitroxyl Polyradicals

Polar radicals

Polarity of the Radical

Polarization radical

Radicals polarity

© 2024 chempedia.info