Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pinocytosi

Materials may be absorbed by a variety of mechanisms. Depending on the nature of the material and the site of absorption, there may be passive diffusion, filtration processes, faciHtated diffusion, active transport and the formation of microvesicles for the cell membrane (pinocytosis) (61). EoUowing absorption, materials are transported in the circulation either free or bound to constituents such as plasma proteins or blood cells. The degree of binding of the absorbed material may influence the availabiHty of the material to tissue, or limit its elimination from the body (excretion). After passing from plasma to tissues, materials may have a variety of effects and fates, including no effect on the tissue, production of injury, biochemical conversion (metaboli2ed or biotransformed), or excretion (eg, from liver and kidney). [Pg.230]

Figure 25-2. The formation and secretion of (A) chylomicrons by an intestinal cell and (B) very low density lipoproteins by a hepatic cell. (RER, rough endoplasmic reticulum SER, smooth endoplasmic reticulum G, Golgi apparatus N, nucleus C, chylomicrons VLDL, very low density lipoproteins E, endothelium SD, space of Disse, containing blood plasma.) Apolipoprotein B, synthesized in the RER, is incorporated into lipoproteins in the SER, the main site of synthesis of triacylglycerol. After addition of carbohydrate residues in G, they are released from the cell by reverse pinocytosis. Chylomicrons pass into the lymphatic system. VLDL are secreted into the space of Disse and then into the hepatic sinusoids through fenestrae in the endothelial lining. Figure 25-2. The formation and secretion of (A) chylomicrons by an intestinal cell and (B) very low density lipoproteins by a hepatic cell. (RER, rough endoplasmic reticulum SER, smooth endoplasmic reticulum G, Golgi apparatus N, nucleus C, chylomicrons VLDL, very low density lipoproteins E, endothelium SD, space of Disse, containing blood plasma.) Apolipoprotein B, synthesized in the RER, is incorporated into lipoproteins in the SER, the main site of synthesis of triacylglycerol. After addition of carbohydrate residues in G, they are released from the cell by reverse pinocytosis. Chylomicrons pass into the lymphatic system. VLDL are secreted into the space of Disse and then into the hepatic sinusoids through fenestrae in the endothelial lining.
Pinocytosis is a property of all cells and leads to the cellular uptake of fluid and fluid contents. There are two types. Fluid-phase pinocytosis is a nonselective process in which the uptake of a solute by formation of small vesicles is simply proportionate to its concentration in the surrounding extracellular fluid. The formation of these vesicles is an extremely active process. Fi-... [Pg.429]

As an example, the low-density lipoprotein (LDL) molecule and its receptor (Chapter 25) are internalized by means of coated pits containing the LDL receptor. These endocytotic vesicles containing LDL and its receptor fuse to lysosomes in the cell. The receptor is released and recycled back to the cell surface membrane, but the apoprotein of LDL is degraded and the choles-teryl esters metabolized. Synthesis of the LDL receptor is regulated by secondary or tertiary consequences of pinocytosis, eg, by metabolic products—such as choles-... [Pg.430]

Compared with phagocytosis, pinocytosis appears to be a universal phenomenon in all cells, including phagocytes. Unlike phagocytosis, which is mediated by the serum opsonin, pinocytosis does not require any external stimulus. Pinocytosis is divided into two types fluid-phase pinocytosis and adsorptive pinocytosis (see Fig. 3B). Fluid-phase pinocytosis is a nonspecific, continuous process, and it is believed to be useful as a general process for transporting macromolecular constructs through epithelia, some endothelia, and into various blood cells. Adsorptive pinocytosis, in... [Pg.534]

With animal cells, the whole virus particle penetrates the cell, being carried inside by endocytosis (phagocytosis or pinocytosis), an active cellular process. We describe some of these processes in detail later in this chapter. [Pg.125]

We might also note another important difference between animal and bacterial cells. Bacterial cells have rigid cell walls containing peptidoglycan and associated substances. Animal cells, on the other hand, lack cell walls. This difference is important for the way by which the virus genome enters and exits the cell. In bacteria, the protein coat of the virus remains on the outside of the cell and only the nucleic acid enters. In animal viruses, on the other hand, uptake of the virus often occurs by endocytosis (pinocytosis or phagocytosis), processes which are characteristic of animal cells, so that the whole virus particle enters the cell. The separation of animal virus genomes from their protein coats then occurs inside the cell. [Pg.162]

The uptake of radiocerium by intestinal lining cells is not unique but may be expected to occur in similar chemical compounds that form colloids or large complexes within the intestine (Sullivan, 1966). Macromolecules are known to be easily absorbed by the intestinal cells of newborn animals through the process of pinocytosis (Clark, 1959). Polyvinylpyrrolidone (PVP) has been shown to be taken into the intestinal cells of rats less than 18 days old (Clarke and Hardy, 1969). [Pg.22]

Antigen binding by a complementary immunoglobulin molecule on the surface of B cells starts a process of cellular internalization of the foreign substance by pinocytosis. Once internalized by endosomes, systematic processing of the antigen takes place which breaks it down into smaller components. [Pg.745]

Swanson, J., Burke, E., and Silverstein, S.C. (1987) Tubular lysosomes accompany stimulated pinocytosis in macrophages. J. Cell Biol. 104, 1217. [Pg.1119]

Pinocytosis is a type of endocytosis that is responsible for the transport of large molecules such as proteins and colloids. Some cell types (e.g., endothelial cells) employ this transport mechanism extensively, but its importance in drug action is uncertain. [Pg.53]

Uptake of protein by hepatocytes can occur via one of two mechanisms (a) receptor-mediated en-docytosis or (b) non-selective pinocytosis, again with subsequent protein proteolysis. Similarly, a proportion of some proteins are likely degraded within the target tissue, as binding to their functional cell surface receptors triggers endocytotic internalization of the receptor ligand complex (Figure 4.7). [Pg.76]

Endocytosis for degradation of macromolecules and uptake of nutrients involves phagocytosis, pinocytosis and autophagy 151 The constitutive pathway is also known as the default pathway because it does not require any type of signal to enter 154... [Pg.139]


See other pages where Pinocytosi is mentioned: [Pg.27]    [Pg.629]    [Pg.6]    [Pg.53]    [Pg.24]    [Pg.430]    [Pg.430]    [Pg.8]    [Pg.82]    [Pg.533]    [Pg.534]    [Pg.535]    [Pg.537]    [Pg.539]    [Pg.566]    [Pg.570]    [Pg.167]    [Pg.237]    [Pg.316]    [Pg.413]    [Pg.457]    [Pg.48]    [Pg.151]    [Pg.153]   
See also in sourсe #XX -- [ Pg.977 ]




SEARCH



Absorptive pinocytosis

Adsorptive pinocytosis

Cell Pinocytosis

Endocytosis pinocytosis

Fluid-phase pinocytosis

Pinocytosi endocytosis

Pinocytosis

Pinocytosis mechanism

Pinocytosis process

Pinocytosis receptor-mediated

Pinocytosis, pharmacokinetics

Transport mechanisms pinocytosis

© 2024 chempedia.info