Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical Properties Under Elastic Shock Compression

Physical Properties Under Elastic Shock Compression [Pg.71]

In this chapter nonlinear piezoelectric and dielectric behavior shock-induced electrical conductance semiconductors elastic physical properties. [Pg.71]

Conventional physical descriptions of materials in the solid state are concerned with solids in which properties are controlled or substantially influenced by the crystal lattice. When defects are treated in typical solid state studies, they are considered to modify and cause local perturbations to bonding controlled by lattice properties. In these cases, defect concentrations are typically low and usually characterized as either point, linear, or higher-order defects, which are seldom encountered together. [Pg.71]

In this chapter physical properties of solids at finite strain within their purely elastic ranges will be investigated. Although the strain levels of a few percent are small relative to the total compressions of typical shock-compression studies, they are large compared to those typically encountered in higher-order elastic property investigations. [Pg.71]

72 Chapter 4. Physical Properties Under Elastic Shock Compression [Pg.72]


Chapter 4. Physical Properties Under Elastic Shock Compression Table 4.5. Shear deformation potentials. (See Davison and Graham [79D01].)... [Pg.94]

To develop a terse, broad description of mechanical, physical, and chemical processes in solids, this book is divided into five parts. Part I contains one chapter with introductory material. Part II summarizes aspects of mechanical responses of shock-compressed solids and contains one chapter on materials descriptions and one on experimental procedures. Part III describes certain physical properties of shock-compressed solids with one chapter on such effects under elastic compression and one chapter on effects under elastic-plastic conditions. Part IV describes work on chemical processes in shock-compressed solids and contains three chapters. Finally, Part V summarizes and brings together a description of shock-compressed solids. The information contained in Part II is available in much better detail in other reliable sources. The information in Parts III and IV is perhaps presented best in this book. [Pg.11]

In this book those ferroelectric solids that respond to shock compression in a purely piezoelectric mode such as lithium niobate and PVDF are considered piezoelectrics. As was the case for piezoelectrics, the pioneering work in this area was carried out by Neilson [57A01]. Unlike piezoelectrics, our knowledge of the response of ferroelectric solids to shock compression is in sharp contrast to that of piezoelectric solids. The electrical properties of several piezoelectric crystals are known in quantitative detail within the elastic range and semiquantitatively in the high stress range. The electrical responses of ferroelectrics are poorly characterized under shock compression and it is difficult to determine properties as such. It is not certain that the relative contributions of dominant physical phenomena have been correctly identified, and detailed, quantitative materials descriptions are not available. [Pg.113]


See other pages where Physical Properties Under Elastic Shock Compression is mentioned: [Pg.94]    [Pg.7]   


SEARCH



Compressed properties

Compression properties

Compressive properties

Elastic Physical Properties

Elasticity properties

Physical shock

Shock compression

© 2024 chempedia.info