Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical properties layered structures

In a reactive sputtering process the oxygen flow rate f(02) is the most relevant parameter. Fig. 1 displays a typical example of the influence of f(02) on physical properties and structure. Hall effect measurements show that the free carrier concentration n decreases continuously with f(02) whereas the electron mobility attains a maximum at medium values of f(02). This variation of the n and p clearly reflects the change from metallic behavior at low f(02) (region I) to oxide formation (region III) at high f(02) which is related with an increase of the optical transmission T. These changes are accompanied by structural variations in the ZnO layers. The SEM... [Pg.199]

The common structural element in the crystal lattice of fluoroaluminates is the hexafluoroaluminate octahedron, AIF. The differing stmctural features of the fluoroaluminates confer distinct physical properties to the species as compared to aluminum trifluoride. For example, in A1F. all corners are shared and the crystal becomes a giant molecule of very high melting point (13). In KAIF, all four equatorial atoms of each octahedron are shared and a layer lattice results. When the ratio of fluorine to aluminum is 6, as in cryoHte, Na AlF, the AIFp ions are separate and bound in position by the balancing metal ions. Fluorine atoms may be shared between octahedrons. When opposite corners of each octahedron are shared with a corner of each neighboring octahedron, an infinite chain is formed as, for example, in TI AIF [33897-68-6]. More complex relations exist in chioUte, wherein one-third of the hexafluoroaluminate octahedra share four corners each and two-thirds share only two corners (14). [Pg.142]

By changing the device architecture e.g. by building multi- instead of single layer structures the physical and chemical processes in the LED can be greatly altered. For that reason the fundamental properties of the LED, such as threshold voltage, efficiency, emission color, brightness, and lifetime can be optimized in multilayer structures [43J. [Pg.160]

The phase transiton from a paraelectric to a ferroelectric state, most characteristic for the SbSI type compounds, has been extensively studied for SbSI, because of its importance with respect to the physical properties of this compound (e.g., J53, 173-177, 184, 257). The first-order transition is accompanied by a small shift of the atomic parameters and loss of the center of symmetry, and is most probably of a displacement nature. The true structure of Sb4S5Cl2 106), Bi4S5Cl2 194), and SbTel 108,403) is still unknown. In contrast to the sulfides and selenides of bismuth, BiTeBr 108) and BiTel (JOS, 390) exhibit a layer structure similar to that of the Cdl2 structure, if the difference between Te, Br, and I (see Fig. 36) is ignored. [Pg.408]

Clearly, then, the chemical and physical properties of liquid interfaces represent a significant interdisciplinary research area for a broad range of investigators, such as those who have contributed to this book. The chapters are organized into three parts. The first deals with the chemical and physical structure of oil-water interfaces and membrane surfaces. Eighteen chapters present discussion of interfacial potentials, ion solvation, electrostatic instabilities in double layers, theory of adsorption, nonlinear optics, interfacial kinetics, microstructure effects, ultramicroelectrode techniques, catalysis, and extraction. [Pg.9]

Callisto orbits Jupiter at a distance of 1.9 million kilometres its surface probably consists of silicate materials and water ice. There are only a few small craters (diameter less than a kilometre), but large so-called multi-ring basins are also present. In contrast to previous models, new determinations of the moon s magnetic field suggest the presence of an ocean under the moon s surface. It is unclear where the necessary energy comes from neither the sun s radiation nor tidal friction could explain this phenomenon. Ruiz (2001) suggests that the ice layers are much more closely packed and resistant to heat release than has previously been assumed. He considers it possible that the ice viscosities present can minimize heat radiation to outer space. This example shows the complex physical properties of water up to now, twelve different crystallographic structures and two non-crystalline amorphous forms are known Under the extreme conditions present in outer space, frozen water may well exist in modifications with as yet completely unknown properties. [Pg.53]

The fundamental physical properties of nanowire materials can be improved even more to surpass their bulk counterpart using precisely engineered NW heterostructures. It has been recently demonstrated that Si/Ge/Si core/shell nanowires exhibit electron mobility surpassing that of state-of-the-art technology.46 Group III-V nitride core/shell NWs of multiple layers of epitaxial structures with atomically sharp interfaces have also been demonstrated with well-controlled and tunable optical and electronic properties.47,48 Together, the studies demonstrate that semiconductor nanowires represent one of the best-defined nanoscale building block classes, with well-controlled chemical composition, physical size, and superior electronic/optical properties, and therefore, that they are ideally suited for assembly of more complex functional systems. [Pg.354]

G. A. Wiegers, Misfit Layer Compounds Structures and Physical Properties, Prog. Solid State Chem., 24, 1-139 (1996). [Pg.203]


See other pages where Physical properties layered structures is mentioned: [Pg.112]    [Pg.152]    [Pg.301]    [Pg.1949]    [Pg.296]    [Pg.86]    [Pg.241]    [Pg.350]    [Pg.777]    [Pg.823]    [Pg.194]    [Pg.232]    [Pg.614]    [Pg.510]    [Pg.142]    [Pg.12]    [Pg.239]    [Pg.579]    [Pg.207]    [Pg.119]    [Pg.1146]    [Pg.1010]    [Pg.1086]    [Pg.245]    [Pg.167]    [Pg.53]    [Pg.503]    [Pg.78]    [Pg.125]    [Pg.107]    [Pg.345]    [Pg.230]    [Pg.51]    [Pg.270]    [Pg.308]    [Pg.362]    [Pg.297]    [Pg.134]    [Pg.407]    [Pg.195]    [Pg.254]    [Pg.472]    [Pg.215]   
See also in sourсe #XX -- [ Pg.199 , Pg.200 , Pg.201 , Pg.202 , Pg.203 ]

See also in sourсe #XX -- [ Pg.199 , Pg.200 , Pg.201 , Pg.202 , Pg.203 ]




SEARCH



Layer properties

Layer structures

Layered structure

Layering structuration

Physical layer

Structure physical

© 2024 chempedia.info