Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrostatic instability

Clearly, then, the chemical and physical properties of liquid interfaces represent a significant interdisciplinary research area for a broad range of investigators, such as those who have contributed to this book. The chapters are organized into three parts. The first deals with the chemical and physical structure of oil-water interfaces and membrane surfaces. Eighteen chapters present discussion of interfacial potentials, ion solvation, electrostatic instabilities in double layers, theory of adsorption, nonlinear optics, interfacial kinetics, microstructure effects, ultramicroelectrode techniques, catalysis, and extraction. [Pg.9]

The above analysis relates to charge-induced liquid break-up under static conditions, in order to provide an understanding of the primary forces involved, but the charge-induced break-up of flowing liquids is complicated by the superposition hydrodynamic perturbations and electrostatic instabilities that result in a variety of disruption behaviors, some of which will be discussed below. [Pg.5]

For solid surfaces interacting in air, the adhesion forces mainly result from van der Waals interaction and capillary force, but the effects of electrostatic forces due to the formation of an electrical double-layer have to be included for analyzing adhesion in solutions. Besides, adhesion has to be studied as a dynamic process in which the approach and separation of two surfaces are always accompanied by unstable motions, jump in and out, attributing to the instability of sliding system. [Pg.184]

Similar instability is caused by the electrostatic attraction due to the applied voltage [56]. Subsequently the hydrodynamic approach was extended to viscoelastic films apparently designed to imitate membranes (see Refs. 58-60, and references therein). A number of studies [58, 61-64] concluded that the SQM could be unstable in such models at small voltages with low associated thinning, consistent with the experimental results. However, as has been shown [60, 65-67], the viscoelastic models leading to instability of the SQM did not account for the elastic force normal to the membrane plane which opposes thickness... [Pg.83]

As explained earlier (Section 2.13) this chemical energy is due to the instability of the arrangements of the elements in CH4+202 compared with those in C02+2H20. (Chemical energy is, in fact, an electrostatic storage of energy in... [Pg.78]

Theoretical calculations on the dithiazolyl radical 4 (R=CF3) have recently shown that n -n dimerisation was unfavourable but association of two such dimers via electrostatic interactions generated a thermodynamically stable tetramer consistent with single crystal X-ray studies. Thus while the value of [AE-P ] may favour (or disfavour) dimer formation, the van der Waals, dipole contributions and electrostatic interactions to the lattice enthalpy should not be underestimated in assessing the thermodynamic stability or instability of these... [Pg.736]

Since for liquids ry is of the order of 2 x 109 dyn/cm3, Sps must be of the order of 7,000 V/micron by this mechanism. Schultz and Wiech suggest that filaments of liquid may first be formed by Rayleigh instability from which are torn finer drops by local electrostatic stresses exceeding the tensile strength. [Pg.25]

Peskin and Raco (P3) have given a theoretical analysis of both ultrasonic and electrostatic atomization from the point of view of liquid instability. They conclude that atomization with low frequency ac will require about twice the field strength as dc but that, by going to high frequency, lower fields are possible with conducting liquids. The value for the critical field for atomization given by these authors for a dc field is, however, smaller than that which would be calculated from Eq. (39) by a factor of (1/32)1/2. This presumably reflects the simplified one-dimensional model used in their derivation. [Pg.40]

The simplest approach to minimizing protein-wall interaction is to use a buffer pH at which interactions do not occur. At acidic pH the silanols on the surface of the capillary are protonated, and the net charge of the proteins is positive. At high pH, the wall is negatively charged, and so are the sample components. Both conditions result in electrostatic repulsion. Problems associated with operation at pH extremes include the potential instability of proteins (denaturation, degradation, and precipitation) and the limited pH range in which to achieve resolution. Additionally, operation at extreme pH does not eliminate all nonspecific interactions. [Pg.175]

A comparison of HF, MP2 and density functional methods in a system with Hartree-Fock wave function instabilities, ONO—OM (for M = Li, Na and K), shows that DFT methods are able to avoid the problems that ab initio methods have for this difficult class of molecules. The computed MP2 frequencies and IR intensities were more affected by instabilities than HF. The hybrid B3LYP functional reproduced the experimental frequencies most reliably. The cis,cis conformation of ONO—OM was highly preferred because of electrostatic attraction and was strongest in the case where M = Li. The small Li cation can fit in best in the planar five-membered ring. This is completely different from the nonionic... [Pg.9]


See other pages where Electrostatic instability is mentioned: [Pg.297]    [Pg.75]    [Pg.262]    [Pg.470]    [Pg.150]    [Pg.5]    [Pg.297]    [Pg.75]    [Pg.262]    [Pg.470]    [Pg.150]    [Pg.5]    [Pg.318]    [Pg.104]    [Pg.53]    [Pg.411]    [Pg.272]    [Pg.289]    [Pg.129]    [Pg.43]    [Pg.654]    [Pg.252]    [Pg.161]    [Pg.58]    [Pg.59]    [Pg.4]    [Pg.427]    [Pg.158]    [Pg.59]    [Pg.332]    [Pg.375]    [Pg.721]    [Pg.723]    [Pg.20]    [Pg.201]    [Pg.157]    [Pg.39]    [Pg.245]    [Pg.3]    [Pg.134]    [Pg.385]    [Pg.587]    [Pg.218]    [Pg.293]   
See also in sourсe #XX -- [ Pg.150 ]




SEARCH



© 2024 chempedia.info