Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical, generally adsorption

General adsorption inhibitors form a physical barrier over the entire metal surface. Examples are diphenylamine and furfuraldehyde. [Pg.647]

The most common method used for the determination of surface area and pore size distribution is physical gas adsorption (also see 1.4.1). Nitrogen, krypton, and argon are some of the typically used adsorptives. The amount of gas adsorbed is generally determined by a volumetric technique. A gravimetric technique may be used if changes in the mass of the adsorbent itself need to be measured at the same time. The nature of the adsorption process and the shape of the equilibrium adsorption isotherm depend on the nature of the solid and its internal structure. The Brunauer-Emmett-Teller (BET) method is generally used for the analysis of the surface area based on monolayer coverage, and the Kelvin equation is used for calculation of pore size distribution. [Pg.13]

The adsorption process involves the reversible physical or chemical fixation of vapor or liquid to a porous solid. These processes are caused by van der Waals forces or electrostatic interactions. Generally, adsorption is used either for purification where the product has little value, as a separation technique as in chromatography [189-191], or as a collection technique if the product has sufficient value [194—198]. When the product is to be collected, such techniques as temperature swing adsorption (TSA), pressure swing adsorption (PSA), or displacement are commonly used. Ion exchange has also been included in this section as it has many parallel uses and can be considered as chemical adsorption [192, 193]. [Pg.149]

The physical chemist is very interested in kinetics—in the mechanisms of chemical reactions, the rates of adsorption, dissolution or evaporation, and generally, in time as a variable. As may be imagined, there is a wide spectrum of rate phenomena and in the sophistication achieved in dealing wifli them. In some cases changes in area or in amounts of phases are involved, as in rates of evaporation, condensation, dissolution, precipitation, flocculation, and adsorption and desorption. In other cases surface composition is changing as with reaction in monolayers. The field of catalysis is focused largely on the study of surface reaction mechanisms. Thus, throughout this book, the kinetic aspects of interfacial phenomena are discussed in concert with the associated thermodynamic properties. [Pg.2]

There is always some degree of adsorption of a gas or vapor at the solid-gas interface for vapors at pressures approaching the saturation pressure, the amount of adsorption can be quite large and may approach or exceed the point of monolayer formation. This type of adsorption, that of vapors near their saturation pressure, is called physical adsorption-, the forces responsible for it are similar in nature to those acting in condensation processes in general and may be somewhat loosely termed van der Waals forces, discussed in Chapter VII. The very large volume of literature associated with this subject is covered in some detail in Chapter XVII. [Pg.350]

All gases below their critical temperature tend to adsorb as a result of general van der Waals interactions with the solid surface. In this case of physical adsorption, as it is called, interest centers on the size and nature of adsorbent-adsorbate interactions and on those between adsorbate molecules. There is concern about the degree of heterogeneity of the surface and with the extent to which adsorbed molecules possess translational and internal degrees of freedom. [Pg.571]

The Unction of this chapter is to summarize some of the general approaches to the determination of the physical and chemical state in both of the types of adsorption systems described. [Pg.572]

Before entering the detailed discussion of physical and chemical adsorption in the next two chapters, it is worthwhile to consider briefly and in relatively general terms what type of information can be obtained about the chemical and structural state of the solid-adsorbate complex. The term complex is used to avoid the common practice of discussing adsorption as though it occurred on an inert surface. Three types of effects are actually involved (1) the effect of the adsorbent on the molecular structure of the adsorbate, (2) the effect of the adsorbate on the structure of the adsorbent, and (3) the character of the direct bond or local interaction between an adsorption site and the adsorbate. [Pg.582]

Differential heats of adsorption generally decrease steadily with increasing amount adsorbed and, in the case of physical adsorption tend to approach the heat of liquefaction of the adsorbate as P approaches P. Some illustrative data... [Pg.648]

The rate of physical adsorption may be determined by the gas kinetic surface collision frequency as modified by the variation of sticking probability with surface coverage—as in the kinetic derivation of the Langmuir equation (Section XVII-3A)—and should then be very large unless the gas pressure is small. Alternatively, the rate may be governed by boundary layer diffusion, a slower process in general. Such aspects are mentioned in Ref. 146. [Pg.661]

In considering isotherm models for chemisorption, it is important to remember the types of systems that are involved. As pointed out, conditions are generally such that physical adsorption is not important, nor is multilayer adsorption, in determining the equilibrium state, although the former especially can play a role in the kinetics of chemisorption. [Pg.698]

The second general cause of a variable heat of adsorption is that of adsorbate-adsorbate interaction. In physical adsorption, the effect usually appears as a lateral attraction, ascribable to van der Waals forces acting between adsorbate molecules. A simple treatment led to Eq. XVII-53. [Pg.700]

Calorimetry is the basic experimental method employed in thennochemistry and thennal physics which enables the measurement of the difference in the energy U or enthalpy //of a system as a result of some process being done on the system. The instrument that is used to measure this energy or enthalpy difference (At/ or AH) is called a calorimeter. In the first section the relationships between the thennodynamic fiinctions and calorunetry are established. The second section gives a general classification of calorimeters in tenns of the principle of operation. The third section describes selected calorimeters used to measure thennodynamic properties such as heat capacity, enthalpies of phase change, reaction, solution and adsorption. [Pg.1899]

In such an experiment the material actually adsorbed by the solid (the adsorbent) is termed the adsorbate, in contradistinction to the adsorptive which is the the general term for the material in the gas phase which is capable of being adsorbed. The adsorption is brought about by the forces acting between the solid and the molecules of the gas. These forces are of two main kinds—physical and chemical—and they give rise to physical (or van der Waals ) adsorption, and chemisorption respectively. The nature of the physical forces will be dealt with in the next section meanwhile it is convenient to note that they are the same in nature as the van der Waals forces which bring about the condensation of a vapour to the liquid state. [Pg.2]

The subsequent literature shows the rule to be generally valid, within a few pet cent, amongst systems which give Typje IV isotherms in the typical example of Table 3.1, the data refer to adsorptives differing widely in their physical and chemical properties, yet the deviation of the saturation volume y, from the mean is within 6 per cent. [Pg.113]

Forces of Adsorption. Adsorption may be classified as chemisorption or physical adsorption, depending on the nature of the surface forces. In physical adsorption the forces are relatively weak, involving mainly van der Waals (induced dipole—induced dipole) interactions, supplemented in many cases by electrostatic contributions from field gradient—dipole or —quadmpole interactions. By contrast, in chemisorption there is significant electron transfer, equivalent to the formation of a chemical bond between the sorbate and the soHd surface. Such interactions are both stronger and more specific than the forces of physical adsorption and are obviously limited to monolayer coverage. The differences in the general features of physical and chemisorption systems (Table 1) can be understood on the basis of this difference in the nature of the surface forces. [Pg.251]

Henry s law corresponds physically to the situation in which the adsorbed phase is so dilute that there is neither competition for surface sites nor any significant interaction between adsorbed molecules. At higher concentrations both of these effects become important and the form of the isotherm becomes more complex. The isotherms have been classified into five different types (9) (Eig. 4). Isotherms for a microporous adsorbent are generally of type I the more complex forms are associated with multilayer adsorption and capillary condensation. [Pg.255]

A sharp separation results in two high purity, high recovery product streams. No restrictions ate placed on the mole fractions of the components to be separated. A separation is considered to be sharp if the ratio of flow rates of a key component in the two products is >10. The separation methods that can potentially obtain a sharp separation in a single step ate physical absorption, molecular sieve adsorption, equiHbrium adsorption, and cryogenic distillation. Chemical absorption is often used to achieve sharp separations, but is generally limited to situations in which the components to be removed ate present in low concentrations. [Pg.457]

The crystalline mineral silicates have been well characterized and their diversity of stmcture thoroughly presented (2). The stmctures of siHcate glasses and solutions can be investigated through potentiometric and dye adsorption studies, chemical derivatization and gas chromatography, and laser Raman, infrared (ftir), and Si Fourier transform nuclear magnetic resonance ( Si ft-nmr) spectroscopy. References 3—6 contain reviews of the general chemical and physical properties of siHcate materials. [Pg.3]

Physical and ionic adsorption may be either monolayer or multilayer (12). Capillary stmctures in which the diameters of the capillaries are small, ie, one to two molecular diameters, exhibit a marked hysteresis effect on desorption. Sorbed surfactant solutes do not necessarily cover ah. of a sohd iaterface and their presence does not preclude adsorption of solvent molecules. The strength of surfactant sorption generally foUows the order cationic > anionic > nonionic. Surfaces to which this rule apphes include metals, glass, plastics, textiles (13), paper, and many minerals. The pH is an important modifying factor in the adsorption of all ionic surfactants but especially for amphoteric surfactants which are least soluble at their isoelectric point. The speed and degree of adsorption are increased by the presence of dissolved inorganic salts in surfactant solutions (14). [Pg.236]

Behavior. Diffusion, Brownian motion, electrophoresis, osmosis, rheology, mechanics, and optical and electrical properties are among the general physical properties and phenomena that are primarily important in coUoidal systems (21,24—27). Of course, chemical reactivity and adsorption often play important, if not dominant, roles. Any physical and chemical feature may ultimately govern a specific industrial process and determine final product characteristics. [Pg.394]

Heterogeneity Adsorbents and ion exchangers can be physically and chemically heterogeneous. Although exceptions exist, solutes generally compete for the same sites. Models for adsorbent heterogeneity have been developed for both discrete and continuous distributions of energies [Ross and Olivier, On Physical Adsorption, Interscience, New York, 1964 Jaroniec and Madey, Rudzinsld and Everett, gen. refs.]. [Pg.1504]


See other pages where Physical, generally adsorption is mentioned: [Pg.1259]    [Pg.229]    [Pg.418]    [Pg.54]    [Pg.236]    [Pg.239]    [Pg.807]    [Pg.848]    [Pg.144]    [Pg.78]    [Pg.203]    [Pg.634]    [Pg.669]    [Pg.685]    [Pg.703]    [Pg.707]    [Pg.251]    [Pg.251]    [Pg.252]    [Pg.255]    [Pg.266]    [Pg.454]    [Pg.274]    [Pg.491]    [Pg.221]    [Pg.529]    [Pg.1496]    [Pg.1510]   
See also in sourсe #XX -- [ Pg.224 ]




SEARCH



Generalized adsorption

Physical adsorption

Physical, generally

© 2024 chempedia.info