Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical chemistry temperature

Allan N L, G D Barrera, J A Purton, C E Sims and M B Taylor 2000. Ionic Solids at High Temperatures and Pressures Ah initio, Lattice Dynamics and Monte Carlo Studies. Physical Chemistry Chemical Physics 2 1099-1111. [Pg.315]

The treatment of heat capacity in physical chemistry provides an excellent and familiar example of the relationship between pure and statistical thermodynamics. Heat capacity is defined experimentally and is measured by determining the heat required to change the temperature of a sample in, say,... [Pg.506]

Remember that the hump which causes the instability with respect to phase separation arises from an unfavorable AH considerations of configurational entropy alone favor mixing. Since AS is multiplied by T in the evaluation of AGj, we anticipate that as the temperature increases, curves like that shown in Fig. 8.2b will gradually smooth out and eventually pass over to the form shown in Fig. 8.2a. The temperature at which the wiggles in the curve finally vanish will be a critical temperature for this particular phase separation. We shall presently turn to the Flory-Huggins theory for some mathematical descriptions of this critical point. The following example reminds us of a similar problem encountered elsewhere in physical chemistry. [Pg.530]

This reaction is strongly exothermic and proceeds spontaneously from left to right for most common metallic sulfides under normal roasting conditions, ie, in air, because P q + Pq = - 20 kPa (0.2 atm) at temperatures ranging from 650 to 1000°C. The physical chemistry of the roasting process is more complex than indicated by equation 3 alone. Sulfur trioxide is also formed,... [Pg.165]

These pioneers understood the interplay between chemical equiUbrium and reaction kinetics indeed, Haber s research, motivated by the development of a commercial process, helped to spur the development of the principles of physical chemistry that account for the effects of temperature and pressure on chemical equiUbrium and kinetics. The ammonia synthesis reaction is strongly equiUbrium limited. The equiUbrium conversion to ammonia is favored by high pressure and low temperature. Haber therefore recognized that the key to a successful process for making ammonia from hydrogen and nitrogen was a catalyst with a high activity to allow operation at low temperatures where the equiUbrium is relatively favorable. [Pg.161]

Galvanic corrosion typically involves two or more dissimilar metals. It should be recognized, however, that sufficient variation in environmental and physical parameters such as fluid chemistry, temperature (see Case History 16.3), flow velocity, and even variations in degrees of metal cold work can induce a flow of corrosion current even within the same metal. [Pg.357]

Moderate means using materials under less hazardous conditions, also called attenuation. Moderation of conditions can be accomplished by strategies which are either physical (lower temperatures, dilution) or chemical (development of a reaction chemistry which operates at less severe conditions). [Pg.40]

Model formulation. After the objective of modelling has been defined, a preliminary model is derived. At first, independent variables influencing the process performance (temperature, pressure, catalyst physical properties and activity, concentrations, impurities, type of solvent, etc.) must be identified based on the chemists knowledge about reactions involved and theories concerning organic and physical chemistry, mainly kinetics. Dependent variables (yields, selectivities, product properties) are defined. Although statistical models might be better from a physical point of view, in practice, deterministic models describe the vast majority of chemical processes sufficiently well. In principle model equations are derived based on the conservation law ... [Pg.234]

E. T. Turkdogan, Physical Chemistry of High Temperature Technology, Academic Press, New York, 1980. [Pg.341]

One of the first scientists to place electrochemistry on a sound scientific basis was Michael Faraday (1791-1867). On the basis of a series of experimental results on electrolysis, in the year 1832 he summarized the phenomenon of electrolysis in what is known today as Faraday s laws of electrolysis, these being among the most exact laws of physical chemistry. Their validity is independent of the temperature, the pressure, the nature of the ionizing solvent, the physical dimensions of the containment or of the electrodes, and the voltage. There are three Faraday s laws of electrolysis, all of which are universally accepted. They are rigidly applicable to molten electrolytes as well as to both dilute and concentrated solutions of electrolytes. [Pg.674]

Link, S. and El-Sayed, M.A. (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanopartides. Journal of Physical Chemistry B, 103 (21), 4212—4217. [Pg.57]

In dilute solutions it is possible to relate the activity coefficients of ionic species to the composition of the solution, its dielectric properties, the temperature, and certain fundamental constants. Theoretical approaches to the development of such relations trace their origins to the classic papers by Debye and Hiickel (6-8). For detailpd treatments of this subject, refer to standard physical chemistry texts or to treatises on electrolyte solutions [e.g., that by Harned... [Pg.217]

Figure 4.2. Equilibrium constants of some reactions as functions of temperature (Karapetyants, Physical Chemistry, Mir Publishers, Moscow, 1974). Figure 4.2. Equilibrium constants of some reactions as functions of temperature (Karapetyants, Physical Chemistry, Mir Publishers, Moscow, 1974).
To show you that all this really does work, I ve listed the experimental composition data for the isopropyl/isobutyl alcohol system from Landolt-Bornstein (Landolt-Bomstein is to physical chemistry what Beilstein is to organic. And wouldn t that make for a wild analogy question on the college board entrance exams ), along with my calculated data (Table 2) (That explains my choice of temperatures for Table 1.). I ve also given the absolute and percent differences between the experimental data, and what I ve calculated. These differences are on the order of 1% or less, a very good agreement, indeed. [Pg.299]


See other pages where Physical chemistry temperature is mentioned: [Pg.1246]    [Pg.1248]    [Pg.221]    [Pg.223]    [Pg.1246]    [Pg.1248]    [Pg.221]    [Pg.223]    [Pg.2389]    [Pg.2698]    [Pg.269]    [Pg.28]    [Pg.76]    [Pg.425]    [Pg.1256]    [Pg.358]    [Pg.842]    [Pg.1164]    [Pg.683]    [Pg.32]    [Pg.20]    [Pg.34]    [Pg.81]    [Pg.342]    [Pg.642]    [Pg.323]    [Pg.326]    [Pg.37]    [Pg.403]    [Pg.149]    [Pg.278]    [Pg.119]    [Pg.402]    [Pg.3]    [Pg.259]    [Pg.104]    [Pg.399]    [Pg.266]    [Pg.198]    [Pg.20]   


SEARCH



Chemistry physical

Physical chemistry physics

© 2024 chempedia.info