Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photooxidative addition

This binuclear photooxidative addition reaction is general for a number of halocarbons (Figure 3). While DCE and 1,2-dibromoethane react cleanly to give the dihalide metal dimers and ethylene, substrates such as bromobenzene or methylene chloride react through an alkyl or aryl intermediate. This intermediate reacts further to yield the dihalide d2-d2 metal complexes. [Pg.171]

Figure 4. Proposed general mechanistic scheme for halocarbon photooxidative addition to binuclear Ir(l) and Pt(II). Figure 4. Proposed general mechanistic scheme for halocarbon photooxidative addition to binuclear Ir(l) and Pt(II).
The cyclometallated Pt(II) complexes are photosensitive in several organic solvents [40, 48, 55, 56, 117, 132]. An accurate investigation carried out in CH2C12 solution [55] has shown that the reaction is a photooxidative addition (Eq. (30)) and the product has a cis configuration. [Pg.56]

Many perfluoroaUphatic ethers and tertiary amines have been prepared by electrochemical fluorination (1 6), direct fluorination using elemental fluorine (7—9), or, in a few cases, by fluorination using cobalt trifluoride (10). Examples of lower molecular weight materials are shown in Table 1. In addition to these, there are three commercial classes of perfluoropolyethers prepared by anionic polymerization of hexafluoropropene oxide [428-59-1] (11,12), photooxidation of hexafluoropropene [116-15-4] or tetrafluoroethene [116-14-3] (13,14), or by anionic ring-opening polymeriza tion of tetrafluorooxetane [765-63-9] followed by direct fluorination (15). [Pg.296]

Oxidation. Atmospheric oxidation of 1,2-dichloroethane at room or reflux temperatures generates some hydrogen chloride and results in solvent discoloration. A 48-h accelerated oxidation test at reflux temperatures gives only 0.006% hydrogen chloride (22). Addition of 0.1—0.2 wt. % of an amine, eg, diisopropylamine, protects the 1,2-dichloroethane against oxidative breakdown. Photooxidation in the presence of chlorine produces monochloroacetic acid and 1,1,2-trichloroethane (23). [Pg.8]

Similarly, photooxidation of dihydrocoralyne (108) in hot methanol at pH 8, subsequent addition of sodium methoxide and additional irradiation yielded 6,7-dimethoxyisoquinolone and 3-methyl-3,5,6-trimetho-xyphthalide via the betainic intermediate 109 (77H45) (Scheme 39). It was demonstrated earlier that dihydrocoralyne is oxidized to this betaine in quantitative yields under physiological conditions (76H153). The autoox-idative degradation of the mesomeric betaine was rationalized by the addition of singlet oxygen. [Pg.103]

Generally, photooxidation has an even stronger negative effect on lasing and stimulated emission in conjugated polymers than it has on the EL-performance. It not only reduces the number of excited 5j states but additionally creates charged absorbing species that partly compensate the stimulated emission due to the neutral excited states. [Pg.171]

Additional chemical stability can be given to PPVs by substitution at the vinyl-ene carbons. Thus, CN-PPV and PPV-DP are more stable than their parent polymers [173]. Carter et al. [172] showed that a random copolymer of PPV containing non-conjugated segments is considerably more stable to photooxidation than the fully conjugated polymer. Of course, the electrical and optical properties are also altered by these substitutions. [Pg.236]

The rate of phosphoprotein formation in the presence of 5 mM CaCl2 was only slightly affected by mild photooxidation in the presence of Rose Bengal, but the hydrolysis of phosphoenzyme intermediate was inhibited sufficiently to account for the inhibition of ATP hydrolysis [359]. The extent of inhibition was similar whether the turnover of E P was followed after chelation of Ca with EGTA, or after the addition of large excess of unlabeled ATP. These observations point to the participation of functionally important histidine residues in the hydrolysis of phosphoprotein intermediate [359]. [Pg.95]

In addition to a-l-PI, there are other examples of the presence of Met(O) residues in proteins isolated from biological material. Proteins found in lens tissue are particularly susceptible to photooxidation and because of the long half-lives of these proteins, any oxidation could be especially detrimental. In this tissue, protein synthesis is localized to the outer region of the tissue and most proteins are stable for the life of the tissue - ". It is thus somewhat surprising that not only is there no Met(O) residues in the young normal human lens but even in the old normal human lens only a small amount of Met(O) residues is found . However, in the cataractous lens as much as 65% of the Met residues of the lens proteins are found in the form of Met(0) . Whether this increase in Met(O) content in these proteins is a cause or a result of the cataracts is not known. In order to determine whether the high content of Met(O) in the cataractous lens is related to a decreased activity of Met(0)-peptide reductase, the level of this enzyme was determined in normal and cataractous lenses. It can be seen from Table 9 that there are no significant differences between the levels of Met(0)-peptide reductase in normal and cataractous lenses. In spite of these results, however, it is still possible that the Met(0)-peptide... [Pg.868]

Colorless triarylmethane leuco materials 8 can be converted to carbon-ium ion (9)-colored materials, either by hydride abstraction or by chemical or photooxidation. In addition, some leuco compounds such as 11 can be converted to colored materials by treatment with an acid. The latter case is similar to the chemistry observed for fluoran (see Chapter 6) or phthalide (see Chapter 4) leuco compounds (Scheme 1). [Pg.127]

First the interaction of selected tetramethylpiperidine (TMP) derivatives with radicals arising from Norrish-type I cleavage of diisopropyl ketone under oxygen was studied. These species are most probably the isopropyl peroxy and isobutyryl peroxy radicals immediately formed after a-splitting of diisopropyl ketone and subsequent addition of O2 to the initially generated radicals. Product analysis and kinetic studies showed that the investigated TMP derivatives exercise a marked controlling influence over the nature of the products formed in the photooxidative process. The results obtained point to an interaction between TMP derivatives and especially the isobutyryl peroxy radical. [Pg.65]

Secondly, the interaction of hindered amines with hydroperoxides was examined. At room temperature, using different monofunctional model hydroperoxides, a direct hydroperoxide decomposition by TMP derivatives was not seen. On the other hand, a marked inhibitory effect of certain hindered amines on the formation of hydroperoxides in the induced photooxidation of hydrocarbons was observed. Additional spectroscopic and analytical evidence is given for complex formation between TMP derivatives and tert.-butyl hydroperoxide. From these results, a possible mechanism for the reaction between hindered amines and the oxidizing species was proposed. [Pg.65]

In the presence of nitroxide I, diisopropyl ketone photooxidation takes a course differing considerably from that without this additive (Fig. 5). In this case high yields of isobutyric acid and acetone were obtained, presumably as products arising from the postulated peroxy radicals c and d. On the other hand, the formation of isopropanol is almost completely suppressed. [Pg.74]


See other pages where Photooxidative addition is mentioned: [Pg.5441]    [Pg.356]    [Pg.359]    [Pg.121]    [Pg.54]    [Pg.57]    [Pg.5440]    [Pg.5441]    [Pg.356]    [Pg.359]    [Pg.121]    [Pg.54]    [Pg.57]    [Pg.5440]    [Pg.379]    [Pg.392]    [Pg.399]    [Pg.401]    [Pg.228]    [Pg.229]    [Pg.229]    [Pg.399]    [Pg.112]    [Pg.171]    [Pg.868]    [Pg.1054]    [Pg.225]    [Pg.45]    [Pg.223]    [Pg.643]    [Pg.388]    [Pg.20]    [Pg.97]    [Pg.102]    [Pg.287]    [Pg.359]    [Pg.360]    [Pg.361]    [Pg.83]   


SEARCH



Halocarbon photooxidative addition

Photooxidative addition complexes

© 2024 chempedia.info